Student Name:	

SPECIALIST MATHEMATICS 2023

Unit 3

Key Topic Test 16 – Antidifferentiation Techniques Technology Active

Recommended writing time*: 45 minutes
Total number of marks available: 30 marks

QUESTION BOOK

© TSSM 2023 Page 1 of 10

^{*} The recommended writing time is a guide to the time students should take to complete this test. Teachers may wish to alter this time and can do so at their own discretion.

Conditions and restrictions

- Students are permitted to bring into the room for this test: pens, pencils, highlighters, erasers, sharpeners and rulers, a CAS and/or scientific calculator
- Students are NOT permitted to bring into the room for this test: blank sheets of paper and/or white out liquid/tape.

Materials supplied

Question book of 10 pages.

Instructions

- Print your name in the space provided on the top of the front page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic communication devices into the room for this test.

© TSSM 2023 Page 2 of 10

SECTION A- Multiple-choice questions

Instructions for Section A

Answer **all** questions in pencil on the answer sheet provided for multiple-choice questions. Choose the response that is **correct** for the question.

A correct answer scores 1, an incorrect answer scores 0.

Marks will **not** be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question

Question 1

 $\int_0^1 \frac{\sqrt{1-x^2}}{x-2} dx$ correct to two decimal places is

- A. -0.46
- **B.** 0.46
- **C.** 0.97
- **D.** -0.81
- **E.** 0.81

Question 2

With a suitable substitution $\int_0^3 x^2 \sqrt{x-1} \, dx$ can be expressed as

A.
$$\int_0^3 \left(u^{\frac{5}{2}} + 2u^{\frac{3}{2}} + u^{\frac{1}{2}} \right) du$$

B.
$$\int_{-1}^{2} \left(u^{\frac{5}{2}} + 2u^{\frac{3}{2}} + u^{\frac{1}{2}} \right) du$$

C.
$$\int_{-1}^{2} \left(u^{\frac{3}{2}} + 2u^{\frac{1}{2}} + 1 \right) du$$

D.
$$\int_{-1}^{2} u^{\frac{5}{2}} du$$

E.
$$\int_{-1}^{2} \left(u^{\frac{3}{2}} + u^{\frac{1}{2}} \right) du$$

Question 3

 $\int x \sin(x) dx$ is equivalent to

A.
$$x \cos(x) + \int \cos(x) dx$$

B.
$$-x\sin(x) - \int x \ dx$$

C.
$$x \cos(x) - \int \sin(x) dx$$

D.
$$-x\cos(x) - \int \cos(x) dx$$

E.
$$-x\cos(x) + \int \cos(x) dx$$

Question 4

Given that $\int_{\frac{\pi}{4}}^{k} \frac{1}{\cos^2(x)\tan(x)} dx = \ln\left(\frac{5}{4}\right)$, the value of k can be found by solving

A.
$$tan(k) = ln\left(\frac{5}{4}\right)$$

B.
$$tan(k) = \frac{4}{5}$$

C.
$$\tan(k) = \frac{5}{4}$$

B.
$$tan(k) = \frac{4}{5}$$

C. $tan(k) = \frac{5}{4}$
D. $cos(k) = \frac{4}{5}$

E.
$$\tan(k) = -\frac{5}{4}$$

Question 5

The integral $\int_a^b \cos(2x) \sin(2x) dx$ can be calculated using

$$\mathbf{A.} \ \frac{1}{2} \int_{a}^{b} \sin(4u) \, du$$

$$\mathbf{B.} \int_{a}^{b} \sin(4x) \, dx$$

B.
$$\int_{a}^{b} \sin(4x) dx$$

C. $2 \int_{a}^{b} \sin(4x) dx$
D. $\frac{1}{2} \int_{a}^{b} u du$
E. $\frac{1}{2} \int_{2a}^{2b} u du$

D.
$$\frac{1}{2} \int_a^{\tilde{b}} u \ du$$

E.
$$\frac{1}{2} \int_{2a}^{2b} u \ du$$

Question 6

 $\int_a^b \frac{2}{(x^2-1)(x+2)} dx$, where a and b are real constants, is equivalent to

A.
$$\int_a^b \left(\frac{2}{3(x+2)} + \frac{1}{x+1} + \frac{1}{3(x-1)} \right) dx$$

B.
$$\int_a^b \left(\frac{2}{3(x+2)} - \frac{1}{x+1} + \frac{1}{3(x-1)}\right) dx$$

C.
$$\int_{\frac{1}{a}}^{\frac{1}{b}} \left(\frac{2}{3(x+2)} - \frac{1}{x+1} + \frac{1}{3(x-1)} \right) dx$$

D.
$$\int_a^b \left(\frac{2}{3(x+2)} - \frac{1}{x+1} + \frac{1}{x-1} \right) dx$$

E.
$$\int_a^b \left(\frac{1}{x+1} - \frac{1}{3(x^2-1)} \right) dx$$

Question 7

An antiderivative of $\int f'(x) \cos(f(x)) dx$ could be

- **A.** $-\sin(f(x)) 4$
- **B.** $f(\sin(x)) + \frac{1}{2}$
- C. cos(f(x))
- **D.** $\sin(x) 2$
- **E.** $\sin(f(x)) + 2$

Section B Short-answer questions

Instructions for Section B

Answer each question in the space provided.

Please provide appropriate workings and use exact answers unless otherwise specified.

Question 1 (8 marks)

a.	Use the substitution $x = \tan(\theta)$ to evaluate $\int_0^1 \frac{x^2}{(1+x^2)^{\frac{5}{2}}} dx$.

4 marks

© TSSM 2023 Page 6 of 10

b.	. Hence, using integration by parts, show that \int_0^∞	$\int_{0}^{1} \frac{x^{2}}{(1+x^{2})^{\frac{5}{2}}} x dx = \frac{-5\sqrt{2}}{12} + \frac{2}{3}$

4 marks

Ι _Δ τ	f(x)	_	$x^2 - 5x + 5$
Let	$\int (\lambda)$	_	$\frac{x^2-5x+8}{x^2-6}$

a.	Show that $f(x)$ can be written in the form $1 + \frac{a}{x^2 - 5x + 8}$, where $a \in R$				
		2 marks			
b.	Hence find $\int f(x) dx$.				
_					
		3 marks			
c.	For what value of k is $\int_{\frac{1}{2}}^{k} f(2x) dx = \int_{0}^{1} f(x) dx$.				
	Give your answer correct to two decimal places.				

1 mark

Question	3	(9	marks)
----------	---	----	--------

a.	Let $x^2 = \cos(y)$. Show that $\frac{dy}{dx} = -\frac{2x}{\sqrt{1-x^4}}$	
		2 marks
b.	Use integration by parts to show that $\int x \cos^{-1}(x^2) dx = \frac{x^2}{2} \cos^{-1}(x^2) - \frac{1}{2} \sqrt{1 - x^4} + c , c \in \mathbb{R}.$	
_		

4 marks

c.	Hence evaluate $\int_0^1 x \cos^{-1}(x^2) dx$.	
_		
		1 mark
d.	Find the value of k for which $\int_0^1 (x \cos^{-1}(x^2) - kx) dx = \frac{1}{4}$?	
	4	
_		

2 marks

END OF KEY TOPIC TEST

© TSSM 2023 Page 10 of 10