Student Name:		

SPECIALIST MATHEMATICS 2023

Unit 3
Key Topic Test 13 – Differentiation Applications
Technology Free

Recommended writing time*: 45 minutes
Total number of marks available: 30 marks

QUESTION BOOK

© TSSM 2023 Page 1 of 7

^{*} The recommended writing time is a guide to the time students should take to complete this test. Teachers may wish to alter this time and can do so at their own discretion.

Conditions and restrictions

- Students are permitted to bring into the room for this test: pens, pencils, highlighters, erasers, sharpeners and rulers
- Students are NOT permitted to bring into the room for this test: any calculator, blank sheets of paper and/or white out liquid/tape.

Materials supplied

• Question and answer book of 7 pages.

Instructions

- Print your name in the space provided on the top of the front page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic communication devices into the room for this test.

© TSSM 2023 Page 2 of 7

Question 1 (6 marks)				
Le	$t f(x) = \ln(x^2 + 4)$			
a.	Find $f'(x)$			
	1 mark			
b.	Hence, find the coordinates of the stationary point of $f(x)$ and show that this stationary point is a point of local minimum.			
	3 marks			
c.	Find the coordinates of any point(s) of inflection of $f(x)$.			

© TSSM 2023 Page 3 of 7

2 marks

2023 SPECIALIST MATHEMATICS KEY TOPIC TEST

Question 2 (4 marks)	
Find the gradient of the normal to the curve $\sin^2(x) + \cos^2(y) = \frac{x}{y}$ at the point $(\frac{\pi}{4}, \frac{\pi}{3})$.	
Question 3 (5 marks) Find the point of intersection of the tangents to the curve given by $2x^2y + 3x = y = 1$.	2y at
- <u></u>	

© TSSM 2023 Page 4 of 7

Question 4 (4 marks)

Petroleum is leaking at a constant rate of $9.5 \ mm^3$ per minute to form a circular puddle on the floor.

The puddle spreads out evenly, with constant depth of 2 mm.

The volume, $V \text{ mm}^3$, of petroleum in the puddle is given by $V = \frac{a}{2}\pi r^2$, where r is the radius in mm and a is a real constant.

a.	Show that $a = 4$.
	1 mark
b.	Find the exact rate of change of the radius of the puddle when the radius is 25 mm.
	2 marks
c.	Find the rate at which the volume is changing with change in radius.

© TSSM 2023 Page 5 of 7

1 mark

2023 SPECIALIST MATHEMATICS KEY TOPIC TEST

Question 5 (8 marks)

Let $f(x) = x^2 e^x$ **a.** Find the coordinates of the stationary point(s) of the curve $y = x^2 e^x$. 2 marks **b.** For what value(s) of x is f(x) strictly increasing?

3 marks

2023 SPECIALIST MATHEMATICS KEY TOPIC TEST

c.	Find the coordinates of the inflection point(s) of the curve $y = x^2 e^x$.
	3 marks
Qı	nestion 6 (3 marks)
	$t f(x) = \sin^{-1}\left(\frac{4}{x}\right).$
Sh	ow that $f'(x) < 0$ for $x > 4$.

END OF KEY TOPIC TEST

© TSSM 2023 Page 7 of 7