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Question 1 (2 marks)
If a is an odd number, then a = 2m + 1, m ∈ Z.
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Since 4m(m + 1) + 1 is not divisible by 2, it is a contradiction. Therefore, a is even.	 A1

Question 2 (6 marks)

a.	 Using the coordinates of point P, (x, y), gives
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�
both gradients M1
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1� � . 	 A1

The shape of the locus is an ellipse.	 A1
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b.	 When a = 3 and k = 2, the shape of the ellipse is given by 
x y2 2

9 18
1� � .

Substituting y = 0 to find the x-intercepts gives:
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Substituting x = 0 to find the y-intercepts gives:
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correct shape A1
correct x-intercepts A1
correct y-intercepts A1

Note: Consequential on answer to Question 2a.
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Question 3 (5 marks)

a.	 a a b a a a b

a b
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� �( ) ( ) ( )

( )1

� A1

b.	 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

a b c d a b c a b d

a c b c a d b d
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� � � �� � � � � �� ��
� � � � � � � �( ) ( ) ( ) ( )a c b c a d b d� A1

c.	 Using the absorption property of Boolean algebra gives:
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Question 4 (6 marks)

a.	 Using a1 = 1 to find a2 gives:

1 2 1 1
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Using a2 to find a3 gives:
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finding a2 and a3 A1

Hence, b
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1
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1
1= = ,  b

a
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4= = . 	 A1
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b.	 na n a
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b1 = 1

Therefore, bn is a geometric sequence with a common ratio of 2 and starting term of 1. 	 A1
Note: Consequential on answer to Question 4a.

c.	 Since bn is a geometric sequence with a common ratio of 2 and starting value of 1:

bn = 2n – 1	 M1

b
a

n
a n b

n

n
n

n n

n

�

� �

� � �2 1� A1
Note: Consequential on answer to Question 4b.
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Question 5 (5 marks)

a.	 Since the three adults must be together, they can be grouped together as one object. Therefore,  
with the five children, there are six objects to arrange and thus 6! arrangements.

Within the group of three adults, there are 3! arrangements.

Hence, there are 3! × 6! = 4320 possible arrangements.	 A1

b.	 Since all adults must be separate, the children need to be arranged first. Therefore, there  
are 5! arrangements for the children.

Each adult must stand between two children. Each adult can stand in six possible places.  

Therefore, there are 
6

3

!

!
 ways to arrange the three adults.

Hence, there are 5
6

3
14 400!

!

!
� �  possible arrangements.	 A1

c.	 Since an adult cannot stand at either end of the line, a child must stand at either end.  

That is two out of the five children; therefore, there are 
5

3

!

!
 arrangements.

For the remaining six people (three adults and three children), there are 6! arrangements.

Hence, there are 
5

3
6 14 400

!

!
!� �  possible arrangements. 	 A1

d.	 There are two possibilities that fulfil the requirements of the question.

The first possibility is that there is a child standing at both ends of the line. There are  
5

3
6 14

!

!
� � 400  arrangements.

The second possibility is that there is an adult standing at one end of the line and a child  

standing at the other end. There are 2 600
3

2

5

4
6 21� � � �

!

!

!

!
!  arrangements.

both possibilities A1
Hence, there are 14 400 + 21 600 = 36 000 possible arrangements. 	 A1

Note: Consequential on answer to Question 5c.
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Question 6 (6 marks)

a.	 Converting the complex number to polar form gives:
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b.	 P i i i i i i( ) ( ) ( ) ( )� � � � � � � � � � �
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c.	 Since −i is a root of the polynomial, z + i is a factor.

Using long division gives:
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Therefore, P(z) = 2(z + i)(z3 – 3). 	 A1

As z3 – 3 = 0:
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Question 7 (5 marks)

a.	 cos( )
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Therefore, �
�

�
3

.  	 A1

b.	 Q

M P N

From the diagram above, it can be seen that MP is the parallel component of the vector  
projection of MQ onto MN.

MN MO ON MQ MO OQ
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Note: A diagram is not required to obtain full marks.
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Question 8 (5 marks)

a.	 i.	 Applying the double angle formula gives:
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and sin2(α) + cos2(α) = 1; therefore, given that a is in quadrant 1,  
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ii.	 Given that cos( ) ,� �� �
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 using trigonometric identity gives:
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tan(β) = –1

Therefore, �
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�
3

4
. 	 A1



VCE Specialist Mathematics Units 1&2 Trial Examination 1 Suggested Solutions

10	 VCE_SM12_Ex1_SS_2023 	 Copyright © 2023 Neap Education Pty Ltd

b.	 sin
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