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VCE Specialist Mathematics Units 3&4 Trial Examination 1 Suggested Solutions

Question 1 (2 marks)

Let u= Z and y = arctan(u).
by

—=—-—and — =
dx x2 du 1+ u2
. . . . 2 1
Using chain rule differentiation, f'(x) =| == | ——— M1
2
X
, -2
So f'(x)= 3 (a=-2,b=4). Al
x +4
Question 2 (3 marks)
a. The conjugate root theorem cannot be applied because not all of the coefficients
of the equation are real. Al
b. Let the other root be w, where w € C.
(z=(=1+D))(z=w)=2"=(1=2i)z+ 1 +5i
LHS =22 (= 1 +i+w)z+ (=1 +i)w M1
Comparing coefficients of z, for example, gives —1 +i +w =1 - 2i.
Sow=2-3i.
The other root is 2 — 3i. Al

Note: w can also be found by solving 1 + 5i = (=1 + i)w.
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Question 3 (4 marks)

y=x+1+i
x_

The vertical asymptote is x = 2 and the non-vertical asymptote is y = x + 1.
dy _q__4
dx (X _ 2)2

4y _ 0 oceurs for x = 0,4.
dx

The stationary points are (0, —1), which is also the y-intercept, and (4, 7).

correct shape (two branches and asymptotic behaviour) Al
correct vertical asymptote Al

correct non-vertical asymptote Al

correct stationary points Al
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Question 4 (3 marks)

Method 1:
2x+1=%x Al
Solving x + 1 =0 and 3x + 1 =0 for x gives x = -1, —%. M1
So -1 <x<—%. Al
Method 2:

. 2 2 2 2
Either (2x+ 1) " <x” or 2x+ 1) " =x". Al

Either3x2+4x+1<0 or3x2+4x+1:0.

Either (x+1)(3x+1)<0 or (x+1)(3x+1)=0 gives x =-1, —%. M1
So -1 <x<—%. Al
Method 3:
Sketch the graphs of y =|2x + 1| and y = |x]. M1
y
A oy=l2a+| y =1
(_1: 1)
()
3’3
> X
)
The graphs intersect at x = —1, —%. Al
So -1 <x<—%. Al
Question 5 (5 marks)
H .
a. AB=(1-8)i+(1+6)j+(2t-5)k M1
H
4B = (- 8)2+ (14 6) + (21— 5)
= (= 161+ 64) + (2 + 121 + 36) + (412 — 201 + 25) Al

= J612 — 241+ 125
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6t—12

J6r* =241 + 125

. d1—|2 dl—
b. Either —‘AB‘ =12t-24 or —‘AB‘ =
dt dt
Solving 12¢ —24 = 0 for ¢ gives t = 2.

. . . H .
Substituting ¢ = 2 into ’AB‘ gives:

48| = Jo(2)2 - 24(2) + 125

= /101
The minimum distance between points A and B is /101.

Question 6 (4 marks)
Method 1:

Resolving vertically: Scos(a) =W+ Tsin(f) (1)
Resolving horizontally: Ssin(a) = Tcos(f) (2)

Substituting S = M into (1) gives Mcos(q) =W+ Tsin(f).
sin(@) sin(«

)

Teos(B) _ w 1 Tsin(p)
tan(a)

Tcos(f)=Wtan(«a) + Tsin(f)tan(x)
Tcos(f)— Tsin(pf)tan(a) = Wtan ()
T(cos(f)— sin(f)tan()) = Wtan(«)
Wtan (o)
cos(fB) - sin(B)tan(a)
Method 2:

So T=

W T

Use of the sine rule (Lami’s theorem) gives

W T

cos(a+ ) sin(a)

Wsin(a)
cos(a+ f)

cos(a+ f)=cos(a)cos(f)—sin(a)sin(f)

Tcos(a+ p)=Wsin(a)=>T=

B cos(a)
~ cos(a)cos(B) — sin(a)sin(B)

cos(a)

_ Wtan(c)
a cos(f) — sin( f)tan(a)

Sin(90° + a+ f)  sin(180° — @)’

M1

M1

Al

Al

M1

Ml

Al

Al

M1

M1 Al
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Question 7 (4 marks)

Differentiating implicitly with respect to x gives 2y§—] =2-2(x+ y)(l + ;Q]) . M1
X X

Tangents parallel to the x-axis satisfy the condition Z—y =0. Thatis,0=2-2(x +y).
X

So this condition satisfies y = 1 —x (or equivalent). Al

Substituting y = 1 —x (or equivalent) into y* = 2x — (x + y)° gives (1 —x)° = 2x— (x + (1 =x))".
Expanding gives 1 —2x + =2x-1.

2
x —4x+2=0 M1
Solving x> —4x+2=0 forx (quadratic formula or completing the square) gives x = 2 + /2.

4+ (=4 —4(1)(2) =2+ ./2.
2

Substituting x=2 + J2 into y=1-xgivesy=-1%F J2.

For example, x =

So the equations of the tangents are y=—1 + J2, y=-1- J2. Al
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Question 8 (4 marks)

2
Let the length be L, where L = j
1

—~==2t—=and — =4

dx 2 dy
dt t t

2 2
2
L= [Zt - ;} +(4)%dr Ml
“1
2
= (4t2 + iz + SJ dt
N t
1
.2 2
=2 I+ ! d
= " t
*1
.2 1
= 2 [f + ;j d[ Al
“1
2 2
= 2{— + loge(t)} Ml
1
1
= 2(2 +log,(2) - Ej
=3 +2log,(2) Al
Question 9 (4 marks)
arctan(2x) + arctan(x) = arctan(3)
tan(arctan(2x) + arctan(x)) = tan(arctan(3))
tan(arctan(2x)) + tan(arctan(x)) _ M1
1 — (tan(arctan(2x))tan(arctan(x)))
2x_+x2 =3 Al
1-2x
328 +x-1)=0=3(x+1)(2x=1)=0
Solving for x gives x = —1, %
When x =- 1, arctan(-2) + arctan(-1) < 0 and arctan(3) > 0. Al
Hence we reject x = —1.
So x= 1 Al
=5
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Question 10 (7 marks)
a. Attempt product rule differentiation on both components to find r(7). M1

Product rule on the i component:
d,t ‘. t

d_t(e cos(t)) =—e sin(t) + e cos(?)
Product rule on the ! component:

d, t. t t.

zt(e sin(t)) = e cos(t) + e sin(¢)

1(1) = (¢'cos (1) — e sin(1))i + (€' cos (1) + €' sin(1)) Al

r(0)=i+j Al

b. ‘g(t)’ = et«/cosz(t) + sinz(t)

t
=e Al

‘i(t)’ = etA/(cos(t) - sin(t))2 + (sin(?) + cos(t))2

= ¢'J2c052(1) + 2sin*(1)
=2 Al
Attempt to find r(7) - f(t). M1

r(z) - ir(t) = ezt(cos(t)(cos(t) —sin(¢)) + sin(#)(sin(z) + cos(t)))

= e2t(cos2(t) + sinz(t))

2t
=e

(1) - (1) 2t

Use of cos(#)==——=— gives cos(d) = ze—z‘
e x 2e

(050

1
So cos(0) =—. Al
NG

Hence, 6 = 411[ and r(z) always makes an angle of 411[ with f(t).
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