

Victorian Certificate of Education – Free Trial Examinations

					Letter
STUDENT NUMBER					

SPECIALIST MATHEMATICS

Free Trial Written Examination 1

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 9 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your **student number** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

At the end of the examination

• You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.

Unless otherwise specified, an **exact** answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the acceleration due to gravity to have magnitude $g \text{ ms}^{-2}$, where g = 9.8.

Question 1 (3 marks)

A 12 kg mass on a smooth plane inclined at 30° is held in equilibrium by a force of F newtons, acting 45° to the inclined plane, as shown below.

a.	On the diagram above, show all other forces acting on the mass and label them.	1 mark
b.	Find F , in newtons, expressing your answer in the form $a\sqrt{b}g$, where $a,b \in \mathbb{N}$.	2 marks

Question	2	(3	marks)
Vucstion	_	ıν	mans

Given that $\cos(2\theta) = \frac{3}{8}$, where $\theta \in \left(\frac{3\pi}{4}, \pi\right)$, find $\operatorname{cis}(\theta)$ in cartesian form.	
Question 3 (4 marks)	
Find the equation of the line perpendicular to the curve given by $e^{xy} = y^2 - 3$ at the point $(0, 2)$.	

Question	4 (3 marks)
Vucstion) illains j

The masses of pears grown on a particular farm vary normally with a mean of 200 grams and a standard deviation of 15 grams. The pears are sold to supermarkets in boxes of 25 pears.
Given that $Pr(-2 < Z < 2) = 0.955$, correct to three decimal places, where $Z \sim N(0,1)$, calculate the probability that the mean mass per pear in a randomly selected 25-pear box exceeds 206 grams. Give your answer correct to three decimal places.
Overtion 5 (4 modes)
Question 5 (4 marks) Let $g: \mathbb{C} \to \mathbb{C}$, $g(z) = z^4 - 2z^3 + 8z - 16$.
Find all solutions of $g(z) = 0$ for z in cartesian form given that $z = 2 \operatorname{cis}\left(\frac{\pi}{3}\right)$ is a solution.

Question	6	(4	marks)
Vucstion	v	17	marks

Find $\int_{1}^{2} \frac{4}{x^{2}(x+2)} dx$, expressing your answer in the form $a + \log_{e} \left(\frac{b}{c}\right)$, where $a, b, c \in \mathbb{N}$.
Question 7 (4 marks) Relative to a fixed origin O , the points A and B are defined by the position vectors $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{b} = \mathbf{i} - \mathbf{j} + m\mathbf{k}$ respectively, where $m \in \mathbb{R}$.
Given that the cosine of the angle AOB is $\frac{-1}{\sqrt{6}}$, find the area of the triangle AOB .

Question 8 (5 marks)

a. Show that $\frac{d}{dx} \left[\log_e \left(x + \sqrt{x^2 + k} \right) \right] = \frac{1}{\sqrt{x^2 + k}}$.

1 mark

Let $h(x) = \frac{\sqrt{x+2}}{\sqrt[4]{x^2+6}}$. Part of the graph of h is shown below.

b. Find the volume generated when the region bounded by the graph of h, the x-axis, and the lines $x = -\sqrt{2}$ and $x = \sqrt{2}$, is rotated about the x-axis. Express your answer in the form $\pi \log_e(b)$, where b > 1.

4 marks

Questi	on 9	(6 1	marks)	١
Questi	U11 /	101	mans	,

The velocity vector, in ms^{-1} , of a 5 kg body moving relative to an origin O at time t sec	onds is given by
$\dot{x}(t) = 2\sin^2(t)\dot{x} + 4\cos^2(t)\dot{y}$, where $t \in [0, \pi]$.	

Express $\dot{\mathfrak{x}}(t)$ in terms of $\cos(2t)$.	
Hence, find $\underline{\mathbf{r}}(t)$ given that $\underline{\mathbf{r}}(0) = \underline{\mathbf{i}} + 2\underline{\mathbf{j}}$.	
the value(s) of t for which the magnitude of the net force acting on the body is $5\sqrt{5}$ N.	3
	Hence, find $\underline{r}(t)$ given that $\underline{r}(0) = \underline{i} + 2\underline{j}$.

Question 10 (4 marks)
Find the arc length of the curve given by $y = \frac{e^x + e^{-x}}{2}$ from $x = -1$ to $x = 1$.

END OF QUESTION AND ANSWER BOOK