
SPECIALIST MATHEMATICS
Written examination 2

Monday 12 November 2018
 Reading time:	 3.00 pm to 3.15 pm (15 minutes)
 Writing time:	 3.15 pm to 5.15 pm (2 hours)

QUESTION AND ANSWER BOOK

Structure of book
Section Number of 

questions
Number of questions 

to be answered
Number of 

marks

A 20 20 20
B   6   6 60

Total 80

•	 Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, 
sharpeners, rulers, a protractor, set squares, aids for curve sketching, one bound reference, one 
approved technology (calculator or software) and, if desired, one scientific calculator. Calculator 
memory DOES NOT need to be cleared. For approved computer-based CAS, full functionality may 
be used.

•	 Students are NOT permitted to bring into the examination room: blank sheets of paper and/or 
correction fluid/tape.

Materials supplied
•	 Question and answer book of 25 pages
•	 Formula sheet
•	 Answer sheet for multiple-choice questions

Instructions
•	 Write your student number in the space provided above on this page.
•	 Check that your name and student number as printed on your answer sheet for multiple-choice 

questions are correct, and sign your name in the space provided to verify this.
•	 Unless otherwise indicated, the diagrams in this book are not drawn to scale.
•	 All written responses must be in English.

At the end of the examination
•	 Place the answer sheet for multiple-choice questions inside the front cover of this book.
•	 You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic 
devices into the examination room.

© VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2018

 

SUPERVISOR TO ATTACH PROCESSING LABEL HEREVictorian Certificate of Education 
2018

STUDENT NUMBER

Letter



SECTION A – continued

2018 SPECMATH EXAM 2 2 

Question 1

Part of the graph of y x= −1
2

1tan ( )  is shown below.

y

x
O

The equations of its asymptotes are 

A.	 y = ± 1
2

B.	 y = ± 3
4

C.	 y = ±1

D.	 y = ±π
2

E.	 y = ±π
4

SECTION A – Multiple-choice questions

Instructions for Section A
Answer all questions in pencil on the answer sheet provided for multiple-choice questions. 
Choose the response that is correct for the question.
A correct answer scores 1; an incorrect answer scores 0.
Marks will not be deducted for incorrect answers.
No marks will be given if more than one answer is completed for any question.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the acceleration due to gravity to have magnitude g ms–2, where g = 9.8
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Question 2

Consider the function f with rule f x
cx d

( )
sin ( )

=
+−

1
1

, where c, d ∈ R and c > 0.
The domain of f  is

A.	 x d
c

> −

B.	 − < ≤
−d

c
x d

c
1

C.	 − −
≤ ≤

−1 1d
c

x d
c

D.	 x R d
c

∈ −






\

E.	 x ∈ R

Question 3
Which one of the following, where A, B, C and D are non-zero real numbers, is the partial fraction form for 

the expression 2 3 1
2 1 1

2

3 2
x x

x x
+ +

+ −( ) ( )
?

A.	
A

x
B

x
C

x2 1 1 1+
+

−
+

+

B.	
A

x
B

x
C

x
Dx

x2 1 2 1 2 1 12 3 2+
+

+
+

+
+

−( ) ( )

C.	
A

x
Bx C
x2 1 12+

+
+
−

D.	
A

x
B

x
C

x2 1 2 1 12+
+

+
+

−( )

E.	
A

x
Bx C

x
D

x2 1 2 1 12+
+

+
+

+
−( )

Question 4
If cos(x) = –a and cot(x) = b, where a, b > 0, then cosec(–x) is equal to

A.	
b
a

B.	 −
b
a

C.	 −
a
b

D.	
a
b

E.	 –ab
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Question 5
Let z = a + bi, where a, b ∈ R \ {0}.

If z
z

R+ ∈
1 , which one of the following must be true?

A.	 Arg( )z =
π
4

B.	 a = –b

C.	 a = b

D.	 z =1

E.	 z2 = 1

Question 6
The complex numbers z, iz and z + iz, where z ∈ C \ {0}, are plotted in the Argand plane, forming the 
vertices of a triangle.
The area of this triangle is given by
A.	 z

B.	 z z+ 2

C.	
z 2

2

D.	 z 2

E.	 3
2

2z

Question 7
A curve is described parametrically by x = sin(2t), y = 2cos(t) for 0 ≤ t ≤ 2π. 
The length of the curve is closest to
A.	   9.2
B.	   9.5
C.	 12.2
D.	 12.5
E.	 38.3
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Question 8

Using a suitable substitution, tan ( )sec ( )2 2

0
6
π

∫ x x dx  can be expressed as

A.	 u u du4 23

0

1

+( )∫
B.	 u u du4 23

1

2

+( )∫
C.	 3

1

0
u du∫

D.	 u du2

0
6
π

∫
E.	 23

1

0
u du∫

Question 9

A solution to the differential equation 
dy
dx x y x y

=
+ − −

2
sin( ) sin( )

 can be obtained from

A.	 1∫ ∫=dx y dy2sin( )

B.	 cos( )y dy x dx∫ ∫= cosec( )

C.	 cos( )x dx y dy∫ ∫= cosec( )

D.	 sec( )x dx y dy∫ ∫= sin ( )

E.	 sec( )x dx y dy∫ ∫= cosec( )
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Question 10

y

x
O–2

–8

–6

–4

–2

2

4

6

8

2 4 6 8–4–6–8

The differential equation that best represents the direction field above is

A.	
dy
dx

x y
y x

=
+
−

2
2

B.	
dy
dx

x y
x y

=
+
−
2

2

C.	
dy
dx

x y
x y

=
−
+

2
2

D.	
dy
dx

x y
y x

=
−
−

2
2

E.	
dy
dx

x y
y x

=
+
−

2
2

Question 11
Consider the vectors given by 

 



a i j= +m  and 
 



b i j= +m , where m ∈ R.
If the acute angle between 



a  and 


b  is 30°, then m equals 

A.	 2 1±

B.	 2 3±

C.	 3 1
3

,

D.	
3

4 3−

E.	
39

13
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Question 12
If 
   

a b a b+ = +  and a,b 0≠
  

, which one of the following is necessarily true?

A.	


a  is parallel to 


b

B.	
 

a b=

C.	
 

a b=

D.	
 

a b= −

E.	


a  is perpendicular to 


b

Question 13
The position vector of a particle that is moving along a curve at time t is given by 

 



r i j,( ) cos( ) sin ( )t t t= +3 4   
t ≥ 0.
The first time when the speed of the particle is a minimum is
A.	 3

B.	 2
π

C.	 tan− 







1 4
3

D.	
3
2
π

E.	 9

Question 14
The scalar resolute of 

  

a i k= −3 2  in the direction of 
 





b i j k= − + +2 3  is

A.	 −
9 13

13

B.	 − − + +( )9
14

2 3






i j k

C.	 −
9 14

14

D.	 − −( )9
13

3 2
 

i k

E.	 −
14
2

Question 15
A constant force of magnitude P newtons accelerates a particle of mass 8 kg in a straight line from a speed of 
4 ms–1 to a speed of 20 ms–1 over a distance of 15 m.
The magnitude of P is
A.	     9.8
B.	   12.5
C.	   12.8
D.	 100
E.	 102.4
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Question 16
The diagram below shows a mass being acted on by a number of forces whose magnitudes are labelled. All 
forces are measured in newtons and the system is in equilibrium.

F2

F1
45° 10

4

3

30°

The value of F2 is

A.	
2

2
8 3 3+( )

B.	
11 2

2

C.	
3 2

2

D.	 7.78

E.	 7.0

Question 17
A tourist standing in the basket of a hot air balloon is ascending at 2 ms–1. The tourist drops a camera over 
the side when the balloon is 50 m above the ground.
Neglecting air resistance, the time in seconds, correct to the nearest tenth of a second, taken for the camera to 
hit the ground is 
A.	 2.3
B.	 2.4
C.	 3.0
D.	 3.2
E.	 3.4
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Question 18
A 95% confidence interval for the mean height m, in centimetres, of a random sample of 36 Irish setter dogs 
is 58.42 < m < 67.31
The standard deviation of the height of the population of Irish setter dogs, in centimetres, correct to two 
decimal places, is
A.	   2.26
B.	   2.27
C.	 13.60
D.	 13.61
E.	 62.87 

Question 19

The gestation period of cats is normally distributed with mean m = 66 days and variance σ 2 16
9

= .

The probability that a sample of five cats chosen at random has an average gestation period greater than 
65 days is closest to
A.	 0.5000
B.	 0.7131
C.	 0.7734
D.	 0.8958
E.	 0.9532

Question 20
The scores on the Mathematics and Statistics tests, expressed as percentages, in a particular year were  
both normally distributed. The mean and the standard deviation of the Mathematics test scores were  
71 and 10 respectively, while the mean and the standard deviation of the Statistics test scores were 75 and  
7 respectively.
Assuming the sets of test scores were independent of each other, the probability, correct to four decimal 
places, that a randomly chosen Mathematics score is higher than a randomly chosen Statistics score is
A.	 0.2877
B.	 0.3716
C.	 0.4070
D.	 0.7123
E.	 0.9088
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SECTION B – Question 1 – continued

Question 1 (11 marks)
Consider the function f  : D → R, where f (x) = 2arcsin(x2 – 1).

a.	 Determine the maximal domain D and the range of f. 2 marks

b.	 Sketch the graph of y = f (x) on the axes below, labelling any endpoints and the y-intercept 
with their coordinates. 3 marks

x
–1–2–3–4 4321O

–1

1

2

3

4

–2

–3

–4

y

SECTION B

Instructions for Section B
Answer all questions in the spaces provided.
Unless otherwise specified, an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the acceleration due to gravity to have magnitude g ms–2, where g = 9.8
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c.	 Find f ′ (x) for x > 0, expressing your answer in the form ′ =
−

f x A

x
( )

2 2
, A ∈ R. 1 mark

d.	 Write down f ′ (x) for x < 0, expressing your answer in the form ′ =
−

f x B

x
( ) ,

2 2
 B ∈ R. 1 mark
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SECTION B – continued

e.	 The derivative f ′ (x) can be expressed in the form ′ =
−

f x g x

x
( ) ( )

2 2
 over its maximal domain.

	 i.	 Find the maximal domain of f ′. 1 mark

	 ii.	 Find g(x), expressing your answer as a piecewise (hybrid) function. 1 mark

	 iii.	 Sketch the graph of g on the axes below. 2 marks

x
–1–2–3–4 4321O

–1

1

2

3

4

–2

–3

–4

y
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SECTION B – Question 2 – continued

Question 2 (10 marks)
a.	 State the centre in the form (x, y), where x, y ∈ R, and state the radius of the circle given by 

z i− +( ) =1 2 2 , where z ∈ C. 1 mark

b.	 By expressing the circle given by z z i+ = −1 2  in cartesian form, show that this circle has 
the same centre and radius as the circle given by z i− +( ) =1 2 2. 2 marks

c.	 Graph the circle given by z z i+ = −1 2  on the Argand diagram below, labelling the 
intercepts with the vertical axis. 2 marks

Re(z)

Im(z)

–5 –4 –3 –2 –1 1 2 3 4 5

5

4

3

2

1

–1

–2

–3

–4

–5

O
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The line given by z z− = −1 3  intersects the circle given by z z i+ = −1 2  in two places.

d.	 Draw the line given by z z− = −1 3  on the Argand diagram in part c. Label the points of 
intersection with their coordinates. 2 marks

e.	 Find the area of the minor segment enclosed by an arc of the circle given by z z i+ = −1 2  
and part of the line given by z z− = −1 3 . 3 marks
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SECTION B – Question 3 – continued

Question 3 (13 marks)

Part of the graph of y x= −
1
2

4 12  is shown below.

y

x
0 1–1

1

–1

1 , 0
2

 
 
 

31,
2

 
  
 

The curve shown is rotated about the y-axis to form a volume of revolution that is to model a 
fountain, where length units are in metres.

a.	 Show that the volume, V cubic metres, of water in the fountain when it is filled to a depth of 

h metres is given by V h h= +







π
4

4
3

3 . 2 marks
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b.	 Find the depth h when the fountain is filled to half its volume. Give your answer in metres, 
correct to two decimal places. 2 marks

The fountain is initially empty. A vertical jet of water in the centre fills the fountain at a rate of  
0.04 cubic metres per second and, at the same time, water flows out from the bottom of the fountain 
at a rate of 0 05. h  cubic metres per second when the depth is h metres.

c.	 i.	 Show that dh
dt

h
h

=
−

+( )
4 5

25 4 12π
. 2 marks

	 ii.	 Find the rate, in metres per second, correct to four decimal places, at which the depth is 
increasing when the depth is 0.25 m. 1 mark
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SECTION B – continued

d.	 Express the time taken for the depth to reach 0.25 m as a definite integral and evaluate this 
integral correct to the nearest tenth of a second. 2 marks

e.	 After 25 seconds the depth has risen to 0.4 m.

	 Using Euler’s method with a step size of five seconds, find an estimate of the depth 30 seconds 
after the fountain began to fill. Give your answer in metres, correct to two decimal places. 2 marks

f.	 How far from the top of the fountain does the water level ultimately stabilise? Give your 
answer in metres, correct to two decimal places. 2 marks
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CONTINUES OVER PAGE
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SECTION B – Question 4 – continued

Question 4 (10 marks)
Two yachts, A and B, are competing in a race and their position vectors on a certain section of the 
race after time t hours are given by

 



r i jA( ) ( ) ( )t t t t= + + +1 22   and 
 



r i jB( ) ( )t t t= + +2 2 3 , t ≥ 0

where displacement components are measured in kilometres from a given reference buoy at 
origin O.

a.	 Find the cartesian equation of the path for each yacht. 2 marks

b.	 Show that the two yachts will not collide if they follow these paths. 2 marks

c.	 Find the coordinates of the point where the paths of the two yachts cross. Give your 
coordinates correct to three decimal places. 2 marks
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One of the rules for the race is that the yachts are not allowed to be within 0.2 km of each other. If 
this occurs there is a time penalty for the yacht that is travelling faster.

d.	 For what values of t  is yacht A travelling faster than yacht B? 2 marks

e.	 If yacht A does not alter its course, for what period of time will yacht A be within 0.2 km of 
yacht B? Give your answer in minutes, correct to one decimal place. 2 marks
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SECTION B – Question 5 – continued

Question 5 (8 marks)
Luggage at an airport is delivered to its owners via a 15 m ramp that is inclined at 30° to the 
horizontal. A 20 kg suitcase, initially at rest at the top of the ramp, slides down the ramp against a 
resistance of v newtons per kilogram, where v ms–1 is the speed of the suitcase.

a.	 On the diagram below, show all forces acting on the suitcase during its motion down the ramp. 1 mark

30°

suitcase

b.	 i.	 By resolving forces parallel to the ramp, write down an equation of motion for the 20 kg 
suitcase. 1 mark

	 ii.	 Hence, show that the magnitude of the acceleration, a ms–2, of the suitcase down the 

	 	 ramp is given by a g v
=

− 2
2

. 1 mark
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c.	 By expressing a in an appropriate form, find the distance x metres that the suitcase has slid as 

a function of v. Give your answer in the form x bv c c
c ve= +
−







log , where b, c ∈ R. 2 marks

d.	 Find the velocity of the suitcase just before it reaches the end of the ramp. Give your answer 
in ms–1, correct to two decimal places. 1 mark

e.	 i.	 Write down a definite integral that gives the time taken for the suitcase to reach a speed 
of 4.5 ms–1. 1 mark

	 ii.	 Find the time taken for the suitcase to reach a speed of 4.5 ms–1. Give your answer in 
seconds, correct to two decimal places. 1 mark
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SECTION B – Question 6 – continued

Question 6 (8 marks)
The heights of mature water buffaloes in northern Australia are known to be normally distributed 
with a standard deviation of 15 cm. It is claimed that the mean height of the water buffaloes is 
150 cm.
To decide whether the claim about the mean height is true, rangers selected a random sample of 50 
mature water buffaloes. The mean height of this sample was found to be 145 cm.
A one-tailed statistical test is to be carried out to see if the sample mean height of 145 cm differs 
significantly from the claimed population mean of 150 cm.

Let X  denote the mean height of a random sample of 50 mature water buffaloes.

a.	 State suitable hypotheses H0 and H1 for the statistical test. 1 mark

b.	 Find the standard deviation of X . 1 mark

c.	 Write down an expression for the p value of the statistical test and evaluate your answer 
correct to four decimal places. 2 marks

d.	 State with a reason whether H0 should be rejected at the 5% level of significance. 1 mark

e.	 What is the smallest value of the sample mean height that could be observed for H0 to be  
not rejected? Give your answer in centimetres, correct to two decimal places. 1 mark
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f.	 If the true mean height of all mature water buffaloes in northern Australia is in fact 145 cm, 
what is the probability that H0 will be accepted at the 5% level of significance? Give your 
answer correct to two decimal places. 1 mark

g.	 Using the observed sample mean of 145 cm, find a 99% confidence interval for the mean 
height of all mature water buffaloes in northern Australia. Express the values in your 
confidence interval in centimetres, correct to one decimal place. 1 mark

 

END OF QUESTION AND ANSWER BOOK
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Specialist Mathematics formulas

Mensuration

area of a trapezium 1
2 a b h+( )

curved surface area of a cylinder 2π rh

volume of a cylinder π r2h

volume of a cone 1
3
π r2h

volume of a pyramid 1
3 Ah

volume of a sphere 4
3
π r3

area of a triangle 1
2 bc Asin ( )

sine rule
a

A
b

B
c

Csin ( ) sin ( ) sin ( )
= =

cosine rule c2 = a2 + b2 – 2ab cos (C )

Circular functions

cos2 (x) + sin2 (x) = 1

1 + tan2 (x) = sec2 (x) cot2 (x) + 1 = cosec2 (x)

sin (x + y) = sin (x) cos (y) + cos (x) sin (y) sin (x – y) = sin (x) cos (y) – cos (x) sin (y)

cos (x + y) = cos (x) cos (y) – sin (x) sin (y) cos (x – y) = cos (x) cos (y) + sin (x) sin (y)

tan ( ) tan ( ) tan ( )
tan ( ) tan ( )

x y x y
x y

+ =
+

−1
tan ( ) tan ( ) tan ( )

tan ( ) tan ( )
x y x y

x y
− =

−
+1

cos (2x) = cos2 (x) – sin2 (x) = 2 cos2 (x) – 1 = 1 – 2 sin2 (x)

sin (2x) = 2 sin (x) cos (x) tan ( ) tan ( )
tan ( )

2 2
1 2x x

x
=

−
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Circular functions – continued

Function sin–1 or arcsin cos–1 or arccos tan–1 or arctan

Domain [–1, 1] [–1, 1] R

Range −





π π
2 2

, [0, �] −







π π
2 2

,

Algebra (complex numbers)

z x iy r i r= + = +( ) =cos( ) sin ( ) ( )θ θ θcis

z x y r= + =2 2 –π < Arg(z) ≤ π

z1z2 = r1r2 cis (θ1 + θ2)
z
z

r
r

1

2

1

2
1 2= −( )cis θ θ

zn = rn cis (nθ)  (de Moivre’s theorem)

Probability and statistics

for random variables X and Y
E(aX + b) = aE(X) + b
E(aX + bY ) = aE(X ) + bE(Y )
var(aX + b) = a2var(X )

for independent random variables X and Y var(aX + bY ) = a2var(X ) + b2var(Y )

approximate confidence interval for μ x z s
n

x z s
n

− +








,

distribution of sample mean X
mean	 E X( ) = µ
variance	 var X

n( ) = σ
2
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END OF FORMULA SHEET

Calculus

d
dx

x nxn n( ) = −1 x dx
n

x c nn n=
+

+ ≠ −+∫ 1
1

11 ,

d
dx

e aeax ax( ) = e dx
a

e cax ax= +∫ 1

d
dx

x
xelog ( )( ) = 1 1

x
dx x ce= +∫ log

d
dx

ax a axsin ( ) cos( )( ) = sin ( ) cos( )ax dx
a

ax c= − +∫ 1

d
dx

ax a axcos( ) sin ( )( ) = − cos( ) sin ( )ax dx
a

ax c= +∫ 1

d
dx

ax a axtan ( ) sec ( )( ) = 2 sec ( ) tan ( )2 1ax dx
a

ax c= +∫
d
dx

x
x

sin−( ) =
−

1
2

1

1
( ) 1 0

2 2
1

a x
dx x

a c a
−

= 





 + >−∫ sin ,

d
dx

x
x

cos−( ) = −

−

1
2

1

1
( ) −

−
= 






 + >−∫ 1 0

2 2
1

a x
dx x

a c acos ,

d
dx

x
x

tan−( ) =
+

1
2

1
1

( ) a
a x

dx x
a c2 2

1

+
= 






 +

−∫ tan

( )
( )

( ) ,ax b dx
a n

ax b c nn n+ =
+

+ + ≠ −+∫ 1
1

11

( ) logax b dx
a

ax b ce+ = + +−∫ 1 1

product rule d
dx

uv u dv
dx

v du
dx

( ) = +

quotient rule d
dx

u
v

v du
dx

u dv
dx

v






 =

−

2

chain rule dy
dx

dy
du

du
dx

=

Euler’s method If 
dy
dx

f x= ( ),
 
x0 = a and y0 = b, then xn + 1 = xn + h  and  yn + 1 = yn + h f (xn)

acceleration a d x
dt

dv
dt

v dv
dx

d
dx

v= = = = 







2

2
21

2

arc length 1 2 2 2

1

2

1

2

+ ′( ) ′( ) + ′( )∫ ∫f x dx x t y t dt
x

x

t

t
( ) ( ) ( )or

Vectors in two and three dimensions

 





r = i + j + kx y z



r = + + =x y z r2 2 2

� � � � �
ir r i j k= = + +

d
dt

dx
dt

dy
dt

dz
dt

 

r r1 2. cos( )= = + +r r x x y y z z1 2 1 2 1 2 1 2θ

Mechanics

momentum




p v= m

equation of motion
 

R a= m
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