

# Victorian Certificate of Education 2018



STUDENT NUMBER

## **SPECIALIST MATHEMATICS**

# Written examination 1

Tuesday 5 June 2018

Reading time: 2.00 pm to 2.15 pm (15 minutes) Writing time: 2.15 pm to 3.15 pm (1 hour)

## **QUESTION AND ANSWER BOOK**

#### Structure of book

| Number of questions | Number of questions<br>to be answered | Number of<br>marks |
|---------------------|---------------------------------------|--------------------|
| 9                   | 9                                     | 40                 |

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

#### Materials supplied

- · Question and answer book of 11 pages
- · Formula sheet
- Working space is provided throughout the book.

### Instructions

- Write your student number in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- · All written responses must be in English.

#### At the end of the examination

· You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

#### **Instructions**

Answer all questions in the spaces provided.

Unless otherwise specified, an exact answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Take the acceleration due to gravity to have magnitude  $g \text{ ms}^{-2}$ , where g = 9.8

#### Question 1 (3 marks)

A light inextensible string hangs over a frictionless pulley connecting masses of 3 kg and 7 kg, as shown below.



a. Draw all of the forces acting on the two masses on the diagram above.

1 mark

b. Calculate the tension in the string.

## Question 2 (3 marks)

Let  $\underline{\mathbf{a}} = 3\underline{\mathbf{i}} - 2\underline{\mathbf{j}} + m\underline{\mathbf{k}}$  and  $\underline{\mathbf{b}} = 2\underline{\mathbf{i}} - \underline{\mathbf{j}} + 3\underline{\mathbf{k}}$ , where  $m \in R$ .

Find the value(s) of m such that the magnitude of the vector resolute of  $\underline{a}$  parallel to  $\underline{b}$  is equal to  $\sqrt{14}$ .

 $|b| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|b| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|b| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|b| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|c| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|c| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|c| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|c| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|c| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|c| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|c| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|c| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|c| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|c| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|c| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|c| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|c| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|c| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|c| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|c| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|c| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|c| = \sqrt{4+1+4} = \sqrt{4}, \qquad 2 \cdot b = \sqrt{4}$   $|c| = \sqrt{4+1+4} = \sqrt{4+1+4}$   $|c| = \sqrt{4+1$ 

3u=6 | u=2 Al

Question 3 (3 marks) + + /5Find  $\sin(t)$  given that  $t = \arccos\left(\frac{12}{13}\right) + \arctan\left(\frac{3}{4}\right)$ .

5ix t = sin (d tp)

5 4 (2 3 /2 ...)

- 13 5 + 13 5 12 m1

 $= \frac{20 + 36}{65}$  = |56| A1

3

#### Question 4 (4 marks)

Throughout this question, use an integer multiple of standard deviations in calculations.

The standard deviation of all scores on a particular test is 21.0

a. From the results of a random sample of n students, a 95% confidence interval for the mean score for all students was calculated to be (44.7, 51.7).

Calculate the mean score and the size of this random sample.

2 marks

| <del>42</del><br><del>3.5</del> = <del>5</del> <del>6</del> |
|-------------------------------------------------------------|
| 12 = 54                                                     |
| 0= 144. A1                                                  |
|                                                             |

**b.** Determine the size of another random sample for which the endpoints of the 95% confidence interval for the population mean of the particular test would be 1.0 either side of the sample mean.

$$\ln = 1764$$

$$A($$



Evaluate  $\int_{1}^{2\sqrt{3}-1} \left(\frac{1}{x^2 + 2x + 5}\right) dx$ 

 $(x+1)^{2}-1+5=(x+1)^{2}+9$  e=x+1

213 x=213-1, c=213

 $\int \frac{1}{u^{1} + 4} du = \frac{1}{2} \int \frac{1}{u^{2}} du = \frac{1}{2} \int \frac{1}{2} du = \frac{1}{2} \int \frac{1}{2$ 



Question 6 (4 marks)

Given that  $y = (x - 1)e^{2x}$  is a solution to the differential equation  $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} = y$ , find the values of a and b, where a and b are real constants.

 $\frac{9-x-1}{9-x-1}e^{2x} = \frac{2x}{9-x-1}e^{2x} = \frac{2x$ 

 $\frac{d^{2}y}{dx^{2}} = \frac{1}{2}e^{2}\left(\frac{1}{2}x^{-1}\right) + \frac{1}{2}e^{2} = \frac{1}{2}e^{2}\left(\frac{1}{2}x^{2} + \frac{1}{2}x^{2}\right)$   $= \frac{2}{4}e^{2}\left(\frac{1}{2}x^{2} + \frac{1}{2}x^{2}\right)$ 

 $a - 4xe^{3x} + be^{3x} (2x-1) = (x-1)e^{3x}$   $4xe^{3x} + be^{3x} (2x-1) = (x-1)e^{3x}$  4xa + 2bx - b = x-1 a = 4

 $\begin{bmatrix} 3 - 1 \\ 4 - 1 \\ 4 - 1 \\ 4 - 1 \end{bmatrix}$ 

Question 7 (4 marks)

2 marks



Hence, find the length of the curve specified by  $y = \sqrt{1-x^2}$  from  $x = \frac{1}{2}$  to  $x = \frac{\sqrt{3}}{2}$ . Give your answer in the form  $k\pi$ ,  $k \in R$ . 2 marks

$$= \left[ \frac{1}{3} + \frac{1}{3} \right] = \left[ \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right] = \left[ \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right] = \left[ \frac{1}{3} + \frac{1}{3}$$

#### Question 8 (6 marks)

A circle in the complex plane is given by the relation  $|z-1-i|=2, z\in C$ .

a. Sketch the circle on the Argand diagram below.

1 mark



**b.** i. Write the equation of the circle in the form  $(x-a)^2 + (y-b)^2 = c$  and show that the gradient of a tangent to the circle can be expressed as  $\frac{dy}{dx} = \frac{1-x}{y-1}$ .

2 marks



ii. Find the gradient of the tangent to the circle where x = 2 in the first quadrant of the complex plane.

x = 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 - 2 y = 1 -

Question 8 - continued

c. Find the equations of all rays that are perpendicular to the circle in the form  $Arg(z) = \alpha$ .



#### Question 9 (9 marks)

**a.** i. Given that  $\cot(2\theta) = a$ , show that  $\tan^2(\theta) + 2a \tan(\theta) - 1 = 0$ .

2 marks



ii. Show that  $tan(\theta) = -a \pm \sqrt{a^2 + 1}$ .  $\frac{1}{2} = \frac{1}{2} = \frac$ 

iii. Hence, show that  $\tan\left(\frac{\pi}{12}\right) = 2 - \sqrt{3}$ , given that  $\cot(2\theta) = \sqrt{3}$ , where  $\theta \in (0, \pi)$ .

Du (11) = - (5 + (5+1=-13+2-2-13

b. Find the gradient of the tangent to the curve  $y = \tan(\theta)$  at  $\theta = \frac{\pi}{12}$ .

 $\frac{dq}{d\theta} = \frac{1}{5\pi c} \frac{dq}{d\theta} = \frac{1}{5\pi$ 

= (+4-4 VS+3 = 8-4 VS) A

Question 9 – continued

c. A solid of revolution is formed by rotating the region between the graph of  $y = \tan(\theta)$ , the horizontal axis, and the lines  $\theta = \frac{\pi}{12}$  and  $\theta = \frac{\pi}{3}$  about the horizontal axis.

Find the volume of the solid of revolution.



$$V = \frac{1}{12} \int_{-12}^{12} 4x^{2} dx dx$$

$$= \frac{1}{12} \int_{-12}^{12} (\sec^{2} \theta - 1) d\theta$$

$$= \frac{1}{12} \int_{-12}^{12} ($$



# Victorian Certificate of Education 2018

# SPECIALIST MATHEMATICS

# Written examination 1

## FORMULA SHEET

### Instructions

This formula sheet is provided for your reference.

A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.