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Question 1 
Worked solution 

( )
( )( ) ( )
( ) ( )( )( )

( )( )( )

4 3 2

3

3

2

1
1 1
1 1 0

1 1 0
0,1 , 1

z i z z z iz
z z i z z i
z z i z z i

z z i z
z i

− + = − −
⇒ − + = − −

⇒ − + − − + =

− + − =
∴ = + ±

 

Mark allocation: 3 marks  

• 1 mark for correctly factorising each side of the equation 
• 1 mark for setting the equation equal to zero and factorising 
• 1 mark for four correct solutions 

 
 
 
  



4 

Copyright © Insight Publications 2017 

Question 2 
Worked solution 

2( 1) 2 3 0vx e x x+ − − − =  

When 1,x =  

2 6 0ve − =  

3ve⇒ =  

log 3 ev⇒ =  

Differentiate both sides of the equation with respect to x: 

( ) ( )2( 1) 2 3 0vd dx e x x
dx dx

+ − − − =  

( 1) 2 2 0v v dve x e x
dx

+ + − − =  

( 1) 2 2v vdvx e x e
dx

+ = + −  

2 2
( 1)

v

v

dv x e
dx x e

+ −
⇒ =

+
 

Substitute 1 and log 3ex v= =  

2 2 3 1
6 6

dv
dx

+ −
⇒ = =  

Accelerate dvv
dx

=  

21the acceleration when 1 is log 3 ms .
6 ex −∴ =  

Mark allocation: 4 marks  

• 1 mark for the correct value of v when x = 1 
• 1 mark for correctly differentiating both sides of the equation with respect to x 

• 1 mark for the correct evaluation of dv
dx

 

• 1 mark for the correct answer 
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Alternative method for finding dv
dx

 

2( 1) 2 3 0vx e x x+ − − − =  
2 2 3

1
v x xe

x
+ +

⇒ =
+

 

2 2 3log
1e

x xv
x

 + +
⇒ =  + 

 

2 2

2

2 2

2

2

2

2 3 (2 2)( 1) ( 2 3)Let 
1 ( 1)

2 4 2 2 3                                         =
( 1)

2 1                                         =
( 1)

x x du x x x xu
x dx x

x x x x
x

x x
x

+ + + + − + +
= ⇒ =

+ +
+ + − − −

+
+ −
+

 

logev u=  

2

1 1
2 3

dv x
du u x x

+
⇒ = =

+ +
 

  

2

2 2

2

2

2 1 1
( 1) 2 3

2 1        =
( 1)( 2 3)

dv x x x
dx x x x

x x
x x x

+ − +
∴ = ×

+ + +
+ −

+ + +

 

When 1,x =  

2 1   and  log 3
2 6 6 e

dv v
dx

= = =
×

 

Acceleration dvv
dx

=  

21the acceleration when 1 is log 3 ms .
6 ex −∴ =  

 

Tip  

• It is easier to obtain dvv
dx

 using implicit differentiation, rather than 

explicitly expressing v as a function of x and then differentiating. 
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Question 3a. 
Worked solution 

sx z
n

µ = ± ×  

10160 1.645
100

µ = ± ×  

160 1.645 160 1.6µ = ± = ±  

158.4 161.6µ≤ ≤  

Mark allocation: 2 marks  

• 1 mark for correctly substituting the values into sx z
n

µ = ± ×  

• 1 mark for the correct answer 
 

Question 3b.i. 
Worked solution 

0 : 157H µ =  

1 : 157H µ >  

Mark allocation: 1 mark  

• 1 mark for the correct answer 

 
Question 3b.ii. 
Worked solution 

159 157Pr Pr( 2) Pr( 1.96)6
36

p z z z

 
 −

= > = > ≈ > 
  
 

 

0.025p⇒ =  

Mark allocation: 1 mark  

• 1 mark for the correct answer 
 

Question 3b.iii. 
Worked solution 

 Reject the null hypothesis as 0.025 0.05p∴ = <  

Mark allocation: 1 mark  

• 1 mark for the correct reason 
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Question 4 
Worked solution 

3
2 4

0

(tan tan )x x dx

π

+∫  

3
2 2

0

tan (1 tan )x x dx

π

= +∫  

3
2 2

0

tan (sec )x x dx

π

= ∫  

Let tanu x=  

2secdu x
dx

⇒ =  

3
3

x uπ
= ⇒ =  

0 0x u= ⇒ =  

33
2 4 2

0 0

(tan tan )x x dx u du

π

∴ + =∫ ∫  

3
3

0

1
3

u =   
 

1 3 3 0
3

= × −  

3=  

Mark allocation: 3 marks  

• 1 mark for correctly setting up the integrand for a substitution of u = tan x 
• 1 mark for obtaining a correct integrand with respect to u 
• 1 mark for the correct answer 

 

Tip  

• Use the substitution u = tan(x) as its derivative, sec2(x) is a factor of the 
integrand. 
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Question 5 
Worked solution 

 

4 2 9R g T T g a= − + − =  

9 2a g⇒ =  

2
9
ga⇒ =  

2

2

2
9

d s ga
dt

= =  

2
9

ds gv t c
dt

⇒ = = +  

0,  0v t= =  

0c⇒ =  

2
9

ds g t
dt

∴ =  

2

9
gs t d= +  

0,  0s t= =  

0d⇒ =  

2

9
gs t∴ =  

1
9
gt s= ⇒ =  

9
gx∴ =  

 

5 kg 

4 kg 

x 

floor 

5g 

2g 

4g 

T 

T 

N 
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Alternative method 
4 2 9R g T T g a= − + − =  

9 2a g⇒ =  

2
9
ga⇒ =  

Using the constant acceleration formula: 

21 2 1
2 9

gx⇒ = × ×  

9
gx∴ =  

Mark allocation: 3 marks  

• 1 mark for the correct acceleration 
• 1 mark for correctly obtaining the displacement as a function of time 
• 1 mark for the correct answer 

 
Note: constant acceleration formulae are NOT covered by the VCAA Study Design for VCE 
Specialist Mathematics Units 3 & 4. If the incorrect answer is obtained using these formulae, 
no working marks can be awarded.  
 

 

Tip  

• Resolving the total of the forces acting in the direction of the intended 
motion of the total of the masses is an efficient way to solve some dynamics 
problems. 
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Question 6 
Worked solution 

3dy y x
dx

=  

Use the separation of variables technique to antidifferentiate. 

1 3dy xdx
y

⇒ =∫ ∫  

3
2log 2e y x c= +  

y = e when x = 1 

log 1 2e e c⇒ = = +  

1c⇒ = −  
3
2log 2 1e y x= −  

3
22 1xy e −=  

2 1x xy e −∴ = ±  

2 1  as 0x xy e y−∴ = >  

Mark allocation: 3 marks  

• 1 mark for correctly integrating using separation of variables 
• 1 mark for correctly evaluating the constant of antidifferentiation 
• 1 mark for the correct answer 
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Question 7a. 
Worked solution 

2 sin(2 )x t− =  

y = 2sin2(t) 1 cos(2 )2 1 cos(2 )
2

t t−
= × = −  

1 cos(2 )y t⇒ − =  
2 2 2 2( 2) (1 ) sin (2 ) cos (2 ) 1x y t t∴ − + − = + =  

or 2 2( 2) ( 1) 1x y− + − =  

Mark allocation: 2 marks  

• 1 mark for correctly expressing y in terms of cos(2t) 
• 1 mark for the correct equation 

 

Tip  

• Use the double angle formula to express y in terms of cos(2t) so that the 
cartesian equation is easily found. 
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Question 7b. 
Worked solution 

2cos(2 )dx t
dt

=  

2sin(2 )dy t
dt

=  

Length = 
2 23

0

dx dy dt
dt dt

π

   +   
   ∫  

( ) ( )
3

2 2

0

2cos(2 ) 2sin(2 )t t dt

π

= +∫  

3
2 2

0

4cos (2 ) 4sin (2 )t t dt

π

= +∫  

3 3

0 0

4 2dt dt

π π

= =∫ ∫  

[ ]3
0

2t
π

=  

2 0
3
π

= −  

2
3
π

=  units 

Mark allocation: 2 marks  

• 1 mark for correctly setting up the integrand representing the curve length  
• 1 mark for the correct answer 
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Question 8a. 
Worked solution 

~b  . ~c ~ ~~
(2 ).i j n k= + + ~ ~~

(4 3 6 )i j k+ +  

⇒ ~b  . ~c = 8 + 3 + 6n = 0  

6 11n⇒ = −  

11
6

n −
∴ =  

Mark allocation: 1 mark  

• 1 mark for the correct answer 
 

Question 8b. 
Worked solution 

~ ~ ~ ~~

2 2

(2 ).(2 )
cos

5 4

i j n k i n k

n n
θ

+ + +
=

+ × +
 

⇒
2

2 2

4 3cos
105 4

n
n n

θ +
= =

+ × +
 

2

2

4 3
105

n
n

+
⇒ =

+
 

2 210(4 ) 3 5n n+ = +  
2 240 10 45 9n n⇒ + = +  

2 5n⇒ =  

5n∴ = ±  

Mark allocation: 2 marks  

• 1 mark for the correct equation for cos( )θ in terms of n 
• 1 mark for the correct answer 

 

Tip  

• The angle between a vector and a plane is the angle between the vector and 
the component of the vector in the direction of the plane only. 
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Question 8c. 
Worked solution 

Vectors ~a , ~b  and ~c  are linearly dependent if: 

~b = ma


 + ~cp where ,  and not both zero.m p R∈  

⇒ b 2i j k 3 i 2 j 2 k 4 i 3 j 6 kn m m m p p p= + + = + + + + +
     

  

 

3 4 2m p⇒ + =  

     2 3 1m p+ =  

     2 6m p n+ =  

3 4 2 6 8 4m p m p+ = ⇒ + =  

2 3 1 6 9 3m p m p+ = ⇒ + =  

1p⇒ = −  

2m⇒ =  

2n⇒ = −  

∴ vectors ~a , ~b  and ~c are linearly independent if \{ 2}n R∈ −  

Mark allocation: 2 marks  

• 1 mark for finding correct values of  and m p where ~b = ma


 + ~cp  

• 1 mark for the correct answer 
 

Tip  

• Determine the value of n for which the vectors are linearly dependent first. 
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Question 9a. 
Worked solution 

Sketch the graph of log ( ).ey x=  

Reflect the part of the graph of log ( )ey x=  that is below the x-axis through the x-axis (i.e. for 
0 1x< < ). 

 

Mark allocation: 1 mark 

• 1 mark for the correctly labelled graph 
 
 
  

x

y

1

1

0

 
y log xe=

y = a

(0, 1)

x = 0

 

x = 0 
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Question 9b. 
Worked solution 

For 1, log ( )ex y x≥ =  

 2 2 or y yx e x e⇒ = =  

For 0 1, log ( )ex y x≤ < = −  

 log ( )ey x⇒ − =  

 2 2 or y yx e x e− −⇒ = =  

Using volume of revolution about y-axis, V = 2
b

a

x dyπ ∫  

Volume 2 2

0

( ).
a

y ye e dyπ −= −∫      (y = a is indicated on the graph) 

2 2

0

1 1 2
2 2

a
y ye eπ π− ⇒ + =  

 

2 21 1 1 1 2
2 2 2 2

a ae e−  ⇒ + − + = 
 

 

2 2 2 4a ae e−⇒ + − =  
2 2 6a ae e−∴ + =  

Mark allocation: 3 marks  

• 1 mark for correctly expressing x as a function of y for 1x ≥  and also for 0 1x< <  
• 1 mark for the correct evaluation of the volume 
• 1 mark for obtaining the correct result 

 
 
  



17 

Copyright © Insight Publications 2017 

Question 10a. 
Worked solution 

arcsin(ax) = arccos(bx), where 1 1 and 1 1ax bx− ≤ ≤ − ≤ ≤  

sin(arcsin( )) sin(arccos( ))ax bx⇒ =  

sin(arccos( ))ax bx⇒ =  

Let u = arcos(bx) 

cosu bx⇒ =  
2 2 2sin 1 cos 1u u b x∴ = − = −  

2 21ax b x⇒ = −  
2 2 2 21a x b x⇒ = −  

( )2 2 2 1x a b⇒ + =  

2
2 2

1x
a b

⇒ =
+

 

2 2

1x
a b

∴ =
+

 

Mark allocation: 2 marks  

• 1 mark for correctly simplifying sin(arccos( ))bx  
• 1 mark for the correct answer 

 

Question 10b. 
Worked solution 

( )
12 2

2 2 2 2
2 2

1 1 1.arccos( ) arccos( ) . . .( 2 ) 1
21

d b x bx bx bx x b x b x
dx b bb x

− −
− = − − − −   − 

 

= 
2 2 2 2

arccos( )
1 1

bx bxbx
b x b x

− +
− −

 

= arccos( )bx  

Mark allocation: 1 mark  

• 1 mark for correctly differentiating using both the product rule and the chain rule 
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Question 10c. 
Worked solution 

arcsin(2 ) and arccos( )y x y x= =  intersect at: 

2 2

1 ,x
a b

=
+

 where a = 2 and b = 1 

2 2

1 1
52 1

x⇒ = =
+

 

⇒  Area required 

1
5

0

[arccos( ) arcsin(2 )]x x dx= −∫  

Area 

1
52

2

0

1 4.arccos( ) 1 .arcsin(2 )
2

xx x x x x
  −
 = − − − +     

 

Area  = 

1
2 5

2

0

1 4.arccos( ) 1 .arcsin(2 )
2

xx x x x x
 −

− − − − 
  

 

Area  = 1 1 4 1 2 1 1 1arccos arcsin 1
5 2 5 25 5 5 5

      − − − × − − −             
 

But 
2 21 2 5 1

55 5
   + = =   
   

 

∴ 1 2arccos arcsin
5 5

   =   
   

 

⇒  Area  = 1 1 2 1 1 1 3arccos arccos
25 5 5 5 5 2 5

    − − − +    
    

 

3 5 3 5 Area =  square units.
2 22 5

−
∴ − =  

Mark allocation: 3 marks  

• 1 mark for setting up the correct integrand which represents the required area 
• 1 mark for the correct antiderivative 
• 1 mark for the correct answer  

 

 
 
 

 
END OF WORKED SOLUTIONS 
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