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SECTION 1

ANSWERS
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SECTION A

Question 1 Answer E

K2016 MC =

2+ X" -8x X(2x* +x-8)

f(x)=

X —4x x(x2—4)

vertical asymptotes at x=-2 and x=2

and a horizontal asymptote at y =2,

and a point of discontinuity at x =0

Question 2 Answer B

6.67 +y

asinl(j
The domain of f(x)z—a is [-a,a)

L[ x |
cos| = : |
a T S — e

a R R - - - -|I£I
f(-a)=——, x=a is a vertical asymptote, (3, 2 2 sin 3)
2 2 f1lx)= —

. a =1 i)

the range is [——,ooj cosT|—
2 -6.67 _ V=

Question 3 Answer A
|z—a|=|z+ail, let z=x+yi
(x—a)+yi|=|x+(y+a)i

\/(x—a)2+y2 :\/x2+(y+a)2

X* —2xa+a’+y* =x"+y’+2ya+a’

a(y+x)=0 since a=0, and y=Im(z) and x=Re(z)

Re(z)+Im(z)=0

Alternatively the set of points equidistant from (a,0) and (0,—a) is the line y =—x.
Note that E. does not include the origin and is therefore incorrect.

Question 4 Answer C

x? x> x>

= = , since we have the non-linear factor,
x* —a (x2 —az)(x2 +a2) (x—a)(x+a)(x2 +a2)

: i . A B Cx+D
the partial fractions are given by + +——
X—a X+a X +a
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Question 5 Answer A
2 3 2
Vzlﬂ'l’zh but h=2r :>r:E V=£7Z'(hj h=ﬂ — d_V=ﬂ
3 2 3 (2 12 dh 4
dv dt  dt dv h?

=inflow —outflow =Q — c\/_ By the chain rule —
dh  av dh 4(Q—c\/ﬁ)

0 2 y 2
t :J (th :J th by properties of definite integrals

)", eho)

Question 6 Answer D
r(t)=cos(t)i+cos(3t)j

The parametric equations are

x=cos(t) and y=cos(3t).

y =cos(3t) =4cos’(t)—3cos(t) .
so that y =4x°—3x, since t>0 xe[-1,1]
The particle moves on part of a cubic.

2 1 2
Question 7 Answer B /
when x=-1, the gradient m is infinite,
when y=1, m= O -2

dy y-1
dx  x+1

only m= satlsfles these conditions.

Question 8 Answer C

Initially no x is present, x(O) =0, after a time of t, equal parts of x combine, leaving

(a—g] and (b—gj of aand b respectively, since k >0 and initial the reaction rate is

fastest, and slowing down as time goes on, then % = k(a——j(b——j x(O) 0

2 2
Question 9 Answer B
X du g —1d ’ 1 o
———dx Letu=b-ax , —=-a = dx=—du and x==(b-u
Jo \b—ax dx a a( )

terminals, when x=0 u=b and when x=1 u=b-a, then

rt bal(b u)x—ldu: 1 (" b- U gyt "

b—-u
= DUy
Jo \/b ax Ju a a’ ), J_ “at),. Ju

by properties of deflnlte integrals
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Question 10 Answer D
v(t)=3cos(2t)i+sin(2t) |
a(t)=-6sin(2t)i+2cos(2t) ]

)i+

\g(t)\:\/(—65|( t))’ +(2cos(2t)) \j365|n (t)+4cos® (2t)
(2)
1

\/363|n

when sin(2t)=

t)+4(1-sin (2t)) 32sin’(2t)+4

\@(t)

Question 11 Answer E

=6, m=3 F__ m‘a(t)‘ =18newtons

max

lu/=3 and |v|=4 and u.v=

|u+y|2=(u+Y)-(u+y)=u-u+y-u+u-yw-y
lu+v =lu[ +2u.v+]y =9+2+16 =27 =9x3
u+y/=3V3

Question 12 Answer B

dy Z(X) ‘EBREREER K2016MC <

deSolve(yEy- {:sec(x}}g and y(D}=2,x,y)

y=2: etan(x}
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Question 13 Answer C

% =bxy where be R\{0} and y=2 when x=1.
X

dy 1 . .

o f(xy)=bxy y,=2 %=1 h =5 using Euler's Method
X

Y = Yo +hf (X, ¥,)
:2+1><b><1x2:2+b and X1:§
2 2
Y, = y1+hf (X:L’yl)
:2+b+%xbxgx(2+b)=2+b+37f(2+b)

2 2
—2+b+@+£—2 5b 3b
2 4

2
Question 14 Answer E
~ dy —sin(\/;)
y_cos(x/;) = v %
b 2

& 2 —sin(/x
S= 1+[ﬂj dx = 1+ L dx

J. dx 2%

P sinz(\/;) Jb\/4x+sin2(ﬁ) 1J'b\/4x+sin2(«/;)
S= 1+ ———~dx= — 2 dx== —— 2~ dx

J. 4% 4x 2 . X
Question 15 Answer C
f(X) X +16 = g I U +16du+c Rl K 2016 MC —
now g(1)=3 2 7 69065

:SZI:x/u4+l6du+c Juti1s du+s

1

= c:3—L1Mdu
ZIXMdu+3—eru

g(x)= j \/quu+J' Ju* +16 du+3

g(x)= I Ju*+16 du+3

9(2)=] Vu+16du+3~7.69

x
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Question 16 Answer D

mX:mg—k\/V ,
mvﬂ:mg—k\ﬁ
dx

v(0)=0

dv_g_ kW
dx v mv
ﬂ:E_L Albert is correct.
dx v m\/\7

kv

|
|

mg

2
When X =0, the terminal velocity is (%) , Colin is correct.

y mg —kv k\/_ mv

dx mv dv mg kx/_

X= J$ dv+c , so Benis incorrect.
mg — kW

Question 17 Answer E

resolving horizontally

(1) 2Fcos(8)+Fsin(20)-P=0
resolving vertically

(2) 2Fsin(@)—Fcos(26)=0

(2) = F(2sin(6)—cos(20))=0

2sin(0)—cos(260)=0

2sin(0)—(1-2sin*(0))=0

2sin*(6)+2sin(6)-1=0
. \/_

sin(6

since 0<sin(<9)<1 and 0<49<%

= 6H=sin" [ﬁ—_lJ
2
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Question 18 Answer A
Reality
Decision Rule H, true H, false
Accept H, CORRECT Type 2 ERROR
Reject H, Type 1 ERROR CORRECT

A type 1 error occurs when H, is rejected when H, is true.

A type 2 error occurs when H, is accepted when H, is false.

Question 19 Answer D

The null hypothesis is what is assumed H: x =20

The alternative hypothesis is what we are trying to show H,: x <20

Question 20 Answer A T —— reo {1

X is the heights of the trees
XEN(u=25,0°=4) , oy =

T

2
X%N[,ux :25,O'X2=g—6] = 0y =

2 0933193
norm Cdf| 24,2, 25, —
3

w|N

Pr()? > 24) =0.933

END OF SECTION A SUGGESTED ANSWERS
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SECTION B
Question 1
ai.  x=4sin’(t) y =4tan(t)sin®*(t) = 4;‘)2(5;)
X=%=8005(t)sin(t) using the quotient rule
_dy _12sin*(t)cos’ (t) +4sin‘(t)
ot cos?(t)
_ 4sin’ (t)(3cos (t)+sin’(t))
cos® (t)
_ 4sin’ (t)(3cos (t)+1-cos’ (t))
cos® (t)
_ 4sin2(t)(20052 (t)+1)
cos”(t)
dy _y_ 4sin’ (t)(2cos (t) +1) ) 1
dx X cos*(t) 8cos(t)sin(t)
_ sin(t)(2cos’ (t)+1)

2cos’(t)

sin(t)(2cos’ (t)+1)

2cos’(t)

ii. gradient is 2, %: =2 solving with t [0, 7]
X

solution by CAS is t :%

it R B

coordinate is (2,2)
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b.i.  r(t)=4sin®(t)i+4tan(t)sin’*(t) j=x(t)i+y(t)]

4sin? (t)(ZCos2 (t)+1)

cos® (t)

[’(t)8cos(t)sin(t)1+{

£ (t)=4sin(2t)i+4tan® (t)(2cos® (t)+1)

4] 4|+8]
[ZJ-M 45
ii. x =4sin’(t)
RHS = X
4—X
64sm6(t)
T4 4S|n2(t)
~ 64sm6(t)
4(1 smz(t))
_ 16sin®(t)sin®(t)
- cosi(t)

=16tan”(t)sin*(t)=y* = LHS
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Done

Define x(f}=4- {sm(f}} z
Define )—{f}=4- tan{:f)- {sin{:f)}2 Done
8- sin(f}- cos(f}

di oo
)
o i{}{f)} 4 {tan{f):}z {2- {cos{jf):}gﬂ]
il ) s o)1)
: Z(x(9) 2- (cos(?))®
AN
A Solve[lsin{f)- (2- {cos{f})2+l) 2. |oseen =0 785308
2- {cos{:}}ls
= 0.785398
4
’ 2
. I]

<
—_—
w |3
Lo Ve
(3%

Define r{f)=[x{f) }{f}] Done
ol n 45

Fii norm(df{_ (!}_}]|f :
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Question 2
3
f(x)= for xe|(0,4
(x)=\7= forx<[0.4)
X(6—x
f’(x):\/_(—e,) a:6,n:§ Al
(4-x)2 2
f”(x):i5 b=12,m="> Al
JX(4=x)2 2
For stationary points f'(x)=0
x =6 but the maximal domain of the function isx €[0,4)
x =0 but the gradient function is not defined at the end-points,
f'(x) is defined for x €(0,4), so there are no stationary points. Al
f”(x)#0 so there are no points of inflexion. Al
X3 3
y’ = = y=4 reflection in the x-axis
4-X 4-X
x =4 is a vertical asymptote. Correct behaviour at the origin, Al

correct shape and the graphs must pass through (2,2) and (2,-2) , from Qla.ii Al

-
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ei.  RHS =22 _y —4x—16=ﬁ—(x2 +4x+16)
4—xX 4—-X
64— (x* +4x+16)(4-x)
- 4—X
64— (4x* +16x+64)+(X* +4x* +16X)
- 4—x
X3
= 1 = LHS alternatively use long division M1
—X
. b
i. VvV :ﬂj y*dx
2 3
V= ﬁj X dx
0 4_ X
°( 64
= ﬂ'J (—— X2 —4x—16jdx
o\ 4—X
Lo e ao]
= —64Ioge(4—x)—§x —2x* —16x Al
0
= 7r(—64loge (2)—%—8—32+64Ioge (4))
:ﬂ(64loge(2)—%j c=64, p=128,q=3 Al
3 Done
Define 71(x)= | —
4—x
domain{f}' {x),x} O=x<4
di{:ﬂ(x}}mqq 2
X 1 2
F e [ 2]
x-4
d—2[f}{x}}|0<x<4 %
dx 12 |—
x-4)
.
2 64 (3-1n(2)-2) =
T {f?(x}}2 dx 3
0
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Question 3

a.

C.

© Kilbaha Multimedia Publishing

FA=—41+4J , @:—(3+\/§)1+(1+\/§)1 ,&:—(1+\/§)1+(3+\/§)j

AB =0B -0A=(1-3)i+(\3-3)
AC =0C -0A=(3-3)i+(v3-1)

Ag =\/(1—J§)2+(J§—3)2 _1-2y3+3+3-6/3+9 = /1683
AB|=2{a-2{3

AC =\/(3—\E)2+(ﬁ—1)2 —\J9-6J3+3+3-23+1=116-8\3
AC| =2\/4-2\3

BC=0C-O0B=2i+2]j

BC| =22

since ‘E‘ =‘ E‘ ;t‘ﬁ‘ — ABC is an isosceles triangle

cos(@):—ﬁ'A—C
| A8]| AC|
cos(0) - 3-3J3-3+3+3-3-3/3+3

4(4-243)
_4(3—2\@) 3-2y3  2+y3_6-4V3+3V3-6_ 3

4(4-243) 2(2-4B) 2+V3  2(4-9) 2
49:0031{—?)

9=>% (or 150°)

Area:%‘ﬁHA—C‘sin(H)
:%(16—8\/§)sin(%j
:2(2—J§)

http://kilbaha.com.au
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a=-4 4] [4 4]
s+ 3) 1+)3] [(fz+3) [3+1]
c:=[-{_1+J__} 3+J_] [ \!_*'1} J_+3]
ab:=b-a [ “’]
ac=c—a [3 J3_ J_ 1]
be:=c-b [ 2]
nor‘m(ab) 2 J? 2
norm{ac) 2 J3_—2
nor‘m(bc) 2-J2_
cos™ dotP{ab,ac) ' S_J'r
i .noml{:ab)-nmm{ac). 6
i- norm(ab}- norm(ac}- sin(ﬂ] =z {J3__2}
2 6
Question 4
a. The complex number b:—<3+\/§)+(1+J§)i is in the second quadrant.
Arg(b)=7r—tan{;+ﬁ]
+
M1
R 1+J’ 3-3) R 3+33-4/3-3
3443 3-\3) 9-3
=z tan‘{ﬁ]
3
—r-Z Al
6
S5t
6
|b|:\/(3+ﬁ)2+(1+ﬁ)2 =9 +63+3+1+243+3 :\/16+8\E:2(ﬁ+1)
. (57
b=2(/3+1|cis| — Al
(Va+1)eis
b. S={z:]z-a|= ( 3- 1)} let z=Xx+vi
‘(x+4) y—4)i ‘— ( 3- 1)
, , ) M1
(x+4) +(y-4) :(2(ﬁ_1))
Sis acircle with centre (—4,4), radius 2(\/5—1) Al
© Kilbaha Multimedia Publishing http://kilbaha.com.au
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C. T:{z:Arg(z):%z},let Z=X+YVi

T is the ray from the origin not included, making an angle of %T
with the positive real axes

tan‘l[lj:%z for x<0 and y>0

X
X:tan(S_ﬂ.]:_ﬁ
X 6 3

J3x

y:—T for x<0 and y>0

d. b=—(3+8)+(1+\3)i and a=—4+4i
Now b—a=(1-+/3)+(v3-3]i and [o—a=2(v/3-1) from Q3 or using CAS
so b lies on the circle S |z—a|:2(\/§—1)
since b= 2(ﬁ+1)cis(%rj and Arg(b)z%r so bliesontheray T

sobeSNT.Theray T isatangent to the circle S, touchingat b .
. . (27
e. c=—(1+/3)+(3+3)i=2(«3+1)cis| ==
(+ )+(+\/_> ( +) [3j

f. Now c—a=(3—J§)+(J§—1)i and |c—a] =2(\/§—1) from Q4 or using
CAS so clieson thecircle S, |z—a|= 2(J§—1).
W={z: Arg(z) =@ } is the ray from the origin not included, making an angle

of @ with the positive real axes. Sincec € S (1W, so c lies on the ray W and

. . . . 2
the ray W is a tangent to the circle S, touching at c, since Arg(c)= ik
o_2"
3
© Kilbaha Multimedia Publishing http://kilbaha.com.au
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g. correct points a,b,c, rays and circle and open circle at origin. G3

M Im(2)

Re(z)
2 4 6 f
21
-41
-6l
h. |u|__ represents the point on the circle S furthest from the origin,

this distance is the magnitude of the complex number a plus the radius of the circle
S. Since |a| = 42 and r = 2(\/5—1)

U], =[a+ T =42 +2(\B-1)=2(2V2 +3-1) Al
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_____________________________________________________|

pelorf i) (el 1) 4
angla(p) 5

6
d 2 [ +2
@i )bl (oD fFe)
angle(c) P

3
-l 23 +2
a=a+d i dra i
lo=d 2-f3 -2
o -3 +{z-1)
el 2-f3 -2
Define 1(x)= J:"_ - xpe<0 Done
Define 72(x)=-/3 - xpc<0 Done
|
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Question 5
. dN N( N j N(500-N) . . dt 2000
a.l. —=—1- = inverting —=————
d 4 500 2000 dN N (500-N)
‘o 2000 dN Al
N (500—N)
ii.  using partial fractions
2000 A+ B A(500—-N)+BN B N (B—A)+500A
N(500-N) N 500-N  N(500-N)  N(500-N) M1
(1) 500A=2000 (2) B-A=0 = A=B=4
t=4 i+; dN since 50< N <500 no need for modulus
N (500—N)
1:Iog (N)—log, (500—-N)+c=log ( N j+c
4 ¢ ¢ *\500-N
50 1
nowwhen t=0 N=50 O=log,| — |+C =>cCc=-log,| = M1
450 9

£—Iog ( N j—log (lj—log ( N j+|og (9)=log (ﬂj
4 *\ 500—N ‘19 *\ 500—N ¢ *\ 500—N

oN ! -t 500-N
e —

_e4

= =
500—-N 9N

t t
ONe 4 =500-N = N[1+9e 4}:500

N =N ()= 50

t
1+9e 4

b. ast—>o N —500

C. OI—N=i(500N—N2)
dt 2000
d?N _d(dN) d (dN)dN
F‘E(EJ‘M(EJE
1 dN

— —_(500-2N)
2000 dt

N (500-2N)(500-N) N (250-N)(500-N)

4,000,000 2,000,000
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2

N =0 =>N =250

dtz

d. since 50 <N <500, inflexion points

when N =250 solving for t =4log, _9x250 =4log,(9)~8.38

500-250
inflexion point (4log, (9),250) Al
correct graph, shape for t >0, N =500 is a horizontal asymptote, Gl

and passing through (0,50)

N =500
500fF—————

400+

T

300

T

(4log, (9),250)

2004

100
(0,50)
t
-5 0 5 10 15 20 25 30 f
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Specialist Mathematics Trial Examination 2 2016 Solutions Section B Page 22
Question 6 N
a. goingup  650-mg=ma = (1) 650=m(g+a) Al
going down mg—624=ma = (2) 624=m(g—a) Al
(1)+(2) 1274=2mg
m=_2l4 _ 65kg substituting a =0.2 m/s? l Al
2x9.8
mg
b.  LetM be the distribution of males, M £N (85,15),
let F be the distribution of females, F<N (65,202).
Let T be the total weight of 12 males and 8 females.
T =12M +8F
E(T)=12E(M)+8E(F)
=12x85+8x65 M1
=1540
Var (T)=12*Var(M )+8Var(F)
=12? x15% +8° x 20° M1
=58000
d
T £ N (1540,58000) AL
Pr(T >1500) = 0.5660
C. X =1000, s=250, n=30,
95% a=0.05 = Z,,,; =1.96
s s
X-196—F=<u<X+1.96— M1
N Jn
1000-198X250 _ 000, 196250
J30 J30
910.54 < 1 £1089.46 Al

————,—,—,————————————
solve{:650=m- (g+a} and 624=m- {g—a}, {m,a}}|g=9.8

a=0.2 and m=£5.

normCdf( 1500, =, 1540,,/58000 | 0.565957

zlnterval 250,1000,20,0.95: statf resuits

END OF SECTION B SUGGESTED ANSWERS

© Kilbaha Multimedia Publishing
This page must be counted in surveys by Copyright Agency Limited (CAL)
http://copyright.com.au

[ " Title

"CLower"
"CUpper"
g
"ME"
Tt
g

'z Inter'val"-
910.54
1089 46

1000.
89 4597
0.
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