The Mathematical Association of Victoria

SPECIALIST MATHEMATICS

SOLUTIONS - Trial Exam 2015 Written Examination 2

SECTION 1: Multiple Choice Questions

Question		Question	
1	В	12	В
2	D	13	D
3	C	14	Е
4	D	15	D
5	D	16	A
6	Е	17	C
7	В	18	A
8	D	19	C
9	В	20	C
10	Е	21	A
11	С	22	D

Question 1 B
$$\frac{(y+2)^2}{4} - \frac{(x-1)^2}{16} = 1 \text{ has asymptotes at } (x-1) = \pm \frac{4}{2}(y+2).$$

Simplifying gives, asymptotes are located at x = 2y + 5 and x = -2y - 3.

x = 2y + 5 intersects the line y = 3 at (11, 3).

$$x = -2y - 3$$
 intersects the line $y = 3$ at $(-9, 3)$.

Question 2 D

By completing the square $4x^2 + 8x + y^2 - 6y + 12 = 0$ can be expressed as $4(x+1)^2 + (y-3)^2 = 1$.

Since $\cos^2(\theta) + \sin^2(\theta) = 1$ we can let $\cos(\theta) = 2(x+1)$ and $\sin(\theta) = y-3$.

Rearranging gives,
$$x = \frac{1}{2}\cos(\theta) - 1$$
 and $y = \sin(\theta) + 3$.

$$\frac{\text{Question 3}}{\overrightarrow{OB} + \overrightarrow{AC}} = \begin{pmatrix} c + a \\ c + a \end{pmatrix} + \begin{pmatrix} -a + c \\ c + a \end{pmatrix} = 2c$$

$$\sec(2\theta) = a \operatorname{so} \cos(2\theta) = \frac{1}{a}$$

$$\cos(2\theta) = 2\cos^2(\theta) - 1$$

$$\therefore \frac{1}{a} = 2\cos^2(\theta) - 1$$

$$\therefore \cos^2(\theta) = \frac{1+a}{2a}$$

$$\therefore \cos(\theta) = \pm \sqrt{\frac{a+1}{2a}}$$

Only positive option given so D.

$$-1 \le 2 - x^2 \le 1$$

Using CAS to solve $-\sqrt{3} \le x \le -1$ or $1 \le x \le \sqrt{3}$

So domain of $\arccos(2-x^2)$ is $\left[-\sqrt{3},-1\right] \cup \left[1,\sqrt{3}\right]$.

From the graph we can see that the range is $\begin{bmatrix} 0,\pi \end{bmatrix}$. So D.

Question 6 E

$$z = \sqrt{3}cis\left(\frac{5\pi}{6}\right) \text{ so } \frac{1}{z^3} = z^{-3} = \left(\sqrt{3}\right)^{-3}cis\left(\frac{5\pi}{6} \times -3\right)$$

Simplifying
$$z^{-3} = \frac{1}{3\sqrt{3}} cis\left(-\frac{5\pi}{2}\right) = \frac{\sqrt{3}}{9} cis\left(-\frac{\pi}{2}\right)$$
.

Converting to Cartesian form gives $z^{-3} = -\frac{\sqrt{3}}{9}i$.

Question 7 E

$$\{z: |z+1| = |z-i|\}$$
 can be expressed by the Cartesian equation $y = -x$.

$$\{z: |z|=2\}$$
 can be expressed by the Cartesian equation $x^2+y^2=4$.

Solving simultaneously gives
$$x = \pm \sqrt{2}$$
, $y = \mp \sqrt{2}$. So $A \cap B = \left\{ \sqrt{2} - \sqrt{2}i, -\sqrt{2} + \sqrt{2}i \right\}$.

Question 8 D

Let
$$z = x + yi$$
. So $w = -i^3 \bar{z} = -i \times i^2 (x - yi) = i (x - yi) = y + xi$.

Reflection in x-axis gives x - yi, followed by a rotation of $\frac{\pi}{2}$ anticlockwise about the origin (ie multiplication by i) gives i(x-iy) = y + ix.

$$\frac{\text{Question 9}}{V = \pi \int x^2 dy}$$

Since
$$y = \sqrt[3]{x}$$
, $x^2 = y^6$, so $V = \pi \int_0^2 y^6 dy = \frac{128\pi}{7}$

$$\frac{dS}{dt} = imput - output$$

$$\frac{dS}{dt} = 0 \times 10 - \frac{S}{60000 + 44} \times 6$$

$$\frac{dS}{dt} = 0 \times 10 - \frac{S}{60000 + 4t} \times 6$$
$$\frac{dS}{dt} = -\frac{3S}{30000 + 2t}$$

Question 11 C

$$y_1 \approx y_0 + hf(x_0, y_0)$$
 where $f(x, y) = \frac{1}{xy}$

$$=1+\frac{1}{1}\times0.1$$

$$= 1.1$$
 when $x_1 = 1.1$

$$y_2 \approx 1.1 + \frac{1}{1.1 \times 1.1} \times 0.1 = 1.18264463... = 1.183$$
 (correct to 3 dec. places)

Question 12 E

By rule:
$$y_2 = \int_{x_1}^{x_2} f(x) dx + y_1$$
 so $y_2 = \int_{5}^{6} (3x^4 - 2x)^{\frac{2}{3}} dx + 10$ B

$$\int_{-1}^{0} \frac{2x+1}{\sqrt{1-2x}} dx \qquad \text{let } u = 1-2x, \frac{du}{dx} = -2$$

Rearranging
$$u = 1-2x$$
 to give $2x+1 = 2-u$

Changing the terminals to u values,

$$x = -1 \rightarrow u = 3$$

$$r = 0 \rightarrow u = 1$$

So
$$\int_{-1}^{0} \frac{2x+1}{\sqrt{1-2x}} dx$$
 can be expressed as $\int_{3}^{1} \frac{2-u}{\sqrt{u}} \times -\frac{1}{2} du$

Simplifying we get
$$-\frac{1}{2}\int_{3}^{1} \left(\frac{2}{\sqrt{u}} - \sqrt{u}\right) du = \frac{1}{2}\int_{1}^{3} \left(\frac{2}{\sqrt{u}} - \sqrt{u}\right) du = \int_{1}^{3} \left(\frac{1}{\sqrt{u}} - \frac{\sqrt{u}}{2}\right) du$$
 D

Question 14 E

Consider
$$\frac{dy}{dx} = \frac{x - y}{x + y}$$
.

When x = 0, $\frac{dy}{dx} = -1$ as indicated on direction field.

When y = 0, $\frac{dy}{dx} = 1$ as indicated on direction field.

When x = 5 and y = 5, $\frac{dy}{dx} = 0$ as indicated on direction field.

When x = 5 and y = -5, $\frac{dy}{dx}$ is ∞ , as indicated on direction field.

Alternatively use CAS

Question 15 D
$$\cos(\theta) = \frac{a.b}{|a||b|} = \frac{2\sqrt{3} - 2\sqrt{3} - 2}{\sqrt{16} \times \sqrt{9}} = \frac{-2}{12} = \frac{-1}{6}$$

So θ is in the second quadrant.

$$\tan(2\theta) = \frac{2\tan(\theta)}{1-\tan^2(\theta)} = \frac{2\times-\sqrt{35}}{1-35} = \frac{\sqrt{35}}{17}$$
 D

Question 16 A

Since a, b and c are linearly dependant then there exists real numbers p and q such that

$$pa+qc=b$$
.

So
$$p \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} + q \begin{bmatrix} -1 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} m \\ n \\ 0 \end{bmatrix}$$

Therefore we obtain the simultaneous equations:

$$2p - q = m$$

$$p - 3q = n$$

$$-p+q=0$$

The third equations gives p=q.

So
$$m = p, n = -2p$$
.

As b is a unit vector: $m^2 + n^2 = 1$.

Therefore:
$$p^2 + (-2p)^2 = 1$$
 gives $p = \pm \frac{1}{\sqrt{5}}$.

So either
$$m = \frac{1}{\sqrt{5}}, n = -\frac{2}{\sqrt{5}}$$
 or $m = -\frac{1}{\sqrt{5}}, n = \frac{2}{\sqrt{5}}$.

$$m = -\frac{1}{\sqrt{5}}, n = \frac{2}{\sqrt{5}}$$
 is option A.

$$\overline{r(t)} = \int v(t) dt$$

$$= \frac{3}{2} \sin(2t) i + 2\cos(t) j - 2e^{-2t} k + c$$

$$r(0) = 0i + 0j + 0k = 0i + 2j - 2k + c$$

So
$$c = -2 j + 2 k$$

Therefore
$$r(t) = \frac{3}{2}\sin(2t)i + (2\cos(t) - 2)j + (2 - 2e^{-2t})k$$

$$a = v \frac{dv}{dx} = (1 - x)^2 \times -2(1 - x) = -2(1 - x)^3$$

Since
$$v = (1-x)^2$$
 then $\frac{dx}{dt} = (1-x)^2$. So $t = \int \frac{1}{(1-x)^2} dx$

$$\therefore t = \frac{1}{1 - x} + c$$

Since x=0 when t=0, gives c=-1, so $t = \frac{1}{1-x} - 1$.

Solving for when t=2, gives $x=\frac{2}{3}$.

 \mathbf{C}

Substituting into the acceleration equation gives $-\frac{2}{27}$ ms⁻².

Question 19 C

Substituting t = 4, v = 0, s = 12 into $s = \frac{1}{2}(u+v)t$ gives u = 6.

Substituting into v = u + at gives a = -1.5.

So net force that brings the particle to rest is $1.5 \times 5 = 7.5N$

Question 20 C

Let the angle made between the string and the ceiling be θ and the tension in the other section of the string be T.

Resolving the forces into components:

Horizontal components: $10\cos(\theta) = T\sin(\theta)$

Vertical components: $2g = T\cos(\theta) + 10\sin(\theta)$

Solving simultaneously gives $\theta = 30.67742$

So closest to 31⁰.

Question 21 A

Mass m kg: mg - T = ma

So T = m(g - a)

Mass M kg: T - R = Ma

But
$$R = \mu N = \frac{1}{3}Mg$$

So $T = M\left(a + \frac{1}{3}g\right)$

Equating the tension equations gives $m(g-a) = M(a + \frac{1}{3}g)$

Therefore
$$\frac{M}{m} = \frac{g - a}{a + \frac{1}{3}g}$$

Substituting
$$a = 2$$
 gives $\frac{M}{m} = \frac{g-2}{2 + \frac{1}{3}g} = \frac{3(g-2)}{6+g} = \frac{3(g-2)}{g+6}$ A

Question 22 D
When
$$t = 9, v = -10$$
.

$$\int_{0}^{9} \left(-\frac{1}{2} (t-3)^{2} + 8 \right) dt = (t-9) \times 10$$

Solving gives $t = \frac{243}{20}$ seconds. D

SECTION 2

Question 1

b. Stationary points occur when
$$f'(x) = 0$$
.

$$f'(x) = \frac{-2x(x+3)}{(x-3)^2(x+1)^2} = 0$$

So
$$x = 0, x = -3$$

$$(0,0)$$
 and $\left(-3,\frac{3}{4}\right)$ A1

c.
$$f''(x) = 0$$
 or $\frac{2(2x^3 + 9x^2 + 9)}{(x-3)^3(x+1)^3} = 0$ M1

$$x = -4.703416.... \approx -4.70$$
 (correct to 2 dec. places)

$$(-4.70, 0.78)$$
 A1

d.

½ mark each asymptote indicated, labelled & graph approaching such

½ mark each, coordinates of turning points indicated & in correct position

 $\frac{1}{2}$ mark location of sections of curve, especially curve crossing asymptote & approaching y=1 from below. Round down.

e. i. Solving
$$\frac{x^2}{(x-1)(x+3)} = -\frac{1}{4}$$
 to give $x = 1, -\frac{3}{5}$.

But since $x \ge 0$ then x=1.

Area =
$$\frac{1}{4} \times 1 - \left| \int_{0}^{1} \frac{x^2}{(x+1)(x-3)} dx \right|$$
 M1 (allocated for the absolute value)

Simplifying we get: Area =
$$\frac{1}{4} + \int_0^1 \frac{x^2}{(x+1)(x-3)} dx$$
 A1

Alternatively,

$$\left| \int_{0}^{1} \left(-\frac{1}{4} - f(x) \right) dx \right|$$
. A1 terminals, A1 absolute value, A1 integrand expression

ii. Area = 0.1644167.... ie Area = 0.16 square units (correct to two decimal places)

Question 2

a.
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \sqrt{2} \ i - \sqrt{2} \ j$$
 A1
$$|\overrightarrow{AB}| = \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2} = 2$$

$$|\overrightarrow{OA}| = \sqrt{(\sqrt{3})^2 + 1^2} = 2$$

$$|\overrightarrow{OB}| = \sqrt{(\sqrt{2} + \sqrt{3})^2 + (1 - \sqrt{2})^2} = \sqrt{2\sqrt{6} - 2\sqrt{2} + 8}$$

So *OAB* is an isosceles triangle.

b.
$$\cos(\theta) = \frac{\overrightarrow{OA} \cdot \overrightarrow{AB}}{\left|\overrightarrow{OA}\right| \left|\overrightarrow{AB}\right|} = \frac{\left(\sqrt{3} \, i + j\right) \cdot \left(\sqrt{2} \, i - \sqrt{2} \, j\right)}{2 \times 2} = \frac{\sqrt{6} - \sqrt{2}}{4}$$
 A1

c. i.
$$u = \sqrt{3} + i = 2\operatorname{cis}\left(\frac{\pi}{6}\right)$$
 A1
$$v = \sqrt{2} - \sqrt{2}i = 2\operatorname{cis}\left(-\frac{\pi}{4}\right)$$
 A1

ii.
$$\therefore \phi = \frac{\pi}{6} + \frac{\pi}{4} = \frac{5\pi}{12}$$
 A1

iii.
$$\cos(\phi) = \cos\left(\frac{\pi}{6} + \frac{\pi}{4}\right) = \cos\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{4}\right) - \sin\left(\frac{\pi}{6}\right)\sin\left(\frac{\pi}{4}\right)$$

M1 (use of compound angle theorem)

$$= \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} - \frac{1}{2} \times \frac{\sqrt{2}}{2}$$
$$= \frac{\sqrt{6} - \sqrt{2}}{4}$$

From **b.**
$$\cos(\theta) = \frac{\sqrt{6} - \sqrt{2}}{4}$$
 : $\theta = \pm \frac{5\pi}{12}$

but θ is the angle between vectors so $\theta \ge 0$, $\theta = \frac{5\pi}{12}$ A1

$$\phi = \frac{\pi}{6} + \frac{\pi}{4} = \frac{5\pi}{12}$$
. So $\phi = \theta$.

d. Let
$$w = i \left(\frac{u}{v}\right)$$
. Express w in polar form.

In polar form
$$i = 0 + i = cis\left(\frac{\pi}{2}\right)$$
 A1

$$w = i\left(\frac{u}{v}\right) = cis\left(\frac{\pi}{2}\right) \times \frac{2cis\left(\frac{\pi}{6}\right)}{2cis\left(-\frac{\pi}{4}\right)} = cis\left(\frac{\pi}{2} + \frac{\pi}{6} - \left(-\frac{\pi}{4}\right)\right) = cis\left(\frac{11\pi}{12}\right)$$
 A1

e.
$$w = cis\left(\frac{11\pi}{12}\right)$$
 so $w^n = cis\left(\frac{11\pi n}{12}\right) = \cos\left(\frac{11\pi n}{12}\right) + i\sin\left(\frac{11\pi n}{12}\right)$

For
$$w^n$$
 to be a real number $\sin\left(\frac{11\pi n}{12}\right) = 0$

$$\therefore \frac{11\pi n}{12} = \pi k, k \in \mathbb{Z}^+$$

$$n = \frac{12k}{11}$$

Therefore n = 12. A1

Question 3

a.
$$\frac{x^2}{100} + \frac{(y-5)^2}{25} = 1$$
 A1

b. i
$$V = \pi \int x^2 dy$$

Rearranging the ellipse equation to make x^2 the subject gives:

$$x^{2} = 100 \left(1 - \frac{(y-5)^{2}}{25} \right) = 4 \left(25 - (y-5)^{2} \right)$$

$$\therefore V = 4\pi \int_{0}^{10} \left(25 - (y-5)^{2} \right) dy$$
A1

ii
$$V = \frac{2000\pi}{3}$$
 cubic units A

c. Solving
$$1500 = 4\pi \int_{0}^{d} \left(25 - (y - 5)^{2}\right) dy$$
 gives $d = 6.4849763$

$$\frac{dy}{dt} = \frac{dy}{dV} \times \frac{dV}{dt} \text{ where } \frac{dV}{dt} = 100 \text{ cm}^{3}/\text{hr}$$

From **b.** ii
$$\frac{dV}{dv} = 4\pi \left(25 - (y - 5)^2\right)$$
 H1

So
$$\frac{dy}{dt} = \frac{1}{4\pi \left(25 - (y - 5)^2\right)} \times 100$$
 M1

When
$$y = 6.4849763$$
 then $\frac{dy}{dt} = 0.34910...$

So rate of change of the depth, correct to two decimal places is 0.35 m/hr A1

d.

$$\frac{dC}{dt} = 0.1(10 - C) = \frac{10 - C}{10} \text{ so } \frac{dt}{dC} = \frac{-10}{C - 10}$$

$$t = -10 \int \frac{1}{C - 10} dC$$

$$t = -10 \log_e (C - 10) + c \qquad \text{M1}$$
When $t = 0$, $C = 50$ so $c = 10 \log_e (40)$

$$t = 10 \log_e \left(\frac{40}{C - 10}\right)$$

$$t = 10\log_e\left(\frac{40}{C - 10}\right)$$

Rearranging to make C the subject $C = 40e^{-0.1t} + 10$

Alternatively, using deSolve to get $C = ke^{-0.1t} + 10$ M1 Substituting t=0, C=50 to get k=40, so $C=40e^{-0.1t}+10$ **A**1

Asymptote at C=10, so chemical concentration settles at 10 kg/m^3 . **A**1

ii. Solve
$$15 = 40e^{-0.1t} + 10$$
 to give $t = 20.7944$.. So 21 hours

Question 4

a.
$$a = -9.8 k$$

$$\therefore v = \int -9.8 k dt = -9.8 t k + c$$

$$\begin{vmatrix} v(0) \end{vmatrix} = 45 \text{ so resolving in the given directions gives:}$$

Initial vertical component of velocity

Initial horizontal component of velocity in *i-j* plane

Initial vertical component of velocity

=
$$45\sin(28^{\circ})$$
 = 21.126... \approx 21.13 (correct to 2 dec. pl.) A1

Horizontal component of velocity in *i-j* plane = $45\cos(28^{\circ})$ = $39.7326...\approx 39.73$

Initial component of velocity in j direction

$$=39.7326...\times\sin(8^{\circ})=5.5297..$$

Initial component of velocity in i direction

$$=39.7326... \times \cos(8^{\circ}) = 39.3459...$$

\$\approx 39.35

H1

Therefore we get, correct to two decimal places: v(t) = 39.35 i + 5.53 j + (21.13 - 9.8t) k

b.
$$r(t) = \int v dt = 39.35t \, i + 5.53t \, j + (21.13t - 4.9t^2) k + c_1$$

 $r(0) = 0$ so $r(t) = 39.35t \, i + 5.53t \, j + (21.13t - 4.9t^2) k$ A1

c. Ball hits ground when vertical component equals zero. Solving $21.13t - 4.9t^2 = 0$ where t > 0 gives 4.31s (correct to 2 dec. pl.) A1

d. Position at
$$t$$
=4.31s is $r(4.31) = 169.58 i + 23.83 j$

For the ball to land on the fairway the j component must be between -25 and 25.

$$-25 < 23.83 < 25$$
 so ball lands on fairway.

A1

e. Distance =
$$\sqrt{(185 - 169.58)^2 + (23.83 - 25)^2} = 15.4643.... \approx 15.5m$$
 A1

f. i.
$$a = 1 - \frac{1}{4}v^2$$
 so $v \frac{dv}{dx} = 1 - \frac{1}{4}v^2$

$$\frac{dv}{dx} = \frac{4 - v^2}{4v}$$

$$\therefore x = \int \frac{4v}{4 - v^2} dv$$

$$x = -2\log_e |4 - v^2| + c$$

$$x = 0, v = 7 \text{ so } c = 2\log_e (45) \text{ H1}$$

$$x = 2\log_e \left| \frac{45}{4 - v^2} \right|$$
A1

ii. Ball stops when v=0 so distance travelled $x = 2\log_e \left| \frac{45}{4} \right| \approx 4.84m$ A1 So ball does not roll into the hole which is 5 metres away.

Question 5

a. Mass *m* is on the point of moving down.

M1 indication of forces on diagram or algebraic equivalent.

In equilibrium so
$$\sum F = 0$$
. Therefore, for mass m : $mg - T = 0$ and for mass M : $T - Mg \sin(38^{\circ}) - \mu Mg \cos(38^{\circ}) = 0$ M1 Substituting for T and μ , gives: $mg - Mg \sin(38^{\circ}) - 0.15Mg \cos(38^{\circ}) = 0$ So $\frac{m}{M} = \sin(38^{\circ}) + 0.15\cos(38^{\circ}) = 0.733863...$ So $p = 0.73$ (correct to 2 dec. places) A1

Mass *m* is on the point of moving up.

M1 indication of forces on diagram or algebraic equivalent.

In equilibrium, so $\sum F = 0$.

Therefore, for mass m: mg - T = 0

and for mass M:
$$Mg \sin(38^{\circ}) - \mu Mg \cos(38^{\circ}) - T = 0$$
 M1

Substituting for T and μ , and solving for $\frac{m}{M}$ gives:

So
$$\frac{m}{M} = \sin(38^{\circ}) - 0.15\cos(38^{\circ}) = 0.497...$$

So
$$q = 0.50$$
 (correct to 2 dec.places)

b. i

$$\sum_{n=0}^{\infty} F = Ma$$

$$\therefore Mg \sin(38^{\circ}) - 0.15Mg \cos(38^{\circ}) = Ma$$

$$a = 4.8751......A1$$

$$v^2 = u^2 + 2as$$
 where $u = 0$, $s = 2.5$, $a = 4.8751...$
 $\therefore v = \sqrt{2 \times 2.5 \times 4.8751...} = 4.937... \approx 4.94 \text{ ms}^{-1}$ A1

ii Time to get to end of inclined plane:

$$s = ut + \frac{1}{2}at^2$$
 where $u = 0$, $s = 2.5$, $a = 4.8751...$

So
$$t = 1.0127....s$$

Therefore time to come to rest along the horizontal plane is 2-1.1027...s A1 $s = \frac{1}{2}(u+v)t$ where u = 4.937..., v = 0, t = 2-1.0127...

So distance travelled = 2.21 m (correct to 2 dec. places) A1