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VCE Specialist Mathematics Units 3&4 Trial Examination 2 Suggested Solutions

SECTION 1

Question 1 E

2
The maximum and minimum values of y occur when x = -3, that is, when Q—%—?’-—)— =k.

Solving this equation for y gives y =3 * J6k.

Hence the maximum value is 3 + J@

Question 2 E

If x2 + bx — ¢ = 0 has two solutions then the graph of f has two vertical asymptotes.
If x2 + bx — ¢ = 0 has two solutions then A > 0.

b~ 4(1)(=c) >0 and s0 b° + 4¢ > 0.

So b2 >—4c.

Question 3 B

Vertical asymptotes occur for values of x such that sin(2x) = 0.

Hence 2x =nr, thatis, x = r—g—[

Question 4 C

sin(x)==% [1- (i)z

s

0

As > <x < m, sin(x) is positive.

J99

sin(x) = 10
_3./11
~ 10
As cosec(x) = _1 we obtain cosec(x) = 10
sin(x)’ 3J11
Question 5 E

h(x)=f"(g(x))g"(x)
h”(x)=f"(g(x)g" (x)g"(x) +f'(g(x))g" (x)

So h”(x) =f"(g(x))(g’(x))” + £ (8(x))g” (x).
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Question 6 A
i
2—1
_ b 2+
2—0 2+i
:—1+2i
5

Sox:—% andy:%.

Question 7 D
A+Dx+yD)+(1-)(x-yi)=6
. .2 . .2
X+yi+xi+i y+x—yi—xi+iy=6
X+yi+xi—-y+x—yi—-xi—-y=6
2x-2y=6

Soy=x-3.

Question 8 C
If z=cos(@) + isin(@) then 7= cos (n6) + isin(nb).

If % = cos (@) —isin(@) then ln = cos(nb) — isin(no).
z

Z - in = cos(nB) + isin(nb) — (cos(nb) — isin(nb))
Z

= 2isin(nb)

Question 9 B

Looking at the direction field, all the gradients along the diagonal with equation y = —x appear to be
approaching zero.

Question 10 A

. . . . . 2 2 . .
There is a repeated linear factor in the denominator, that is, x™ + 6x + 9 = (x + 3)", so the partial fraction

. A B
form is +

(x+3) (x+3)°

Question 11 D
The amount of dissolved chemical at  minutes is y grams.
So the amount of undissolved chemical at  minutes is (8 — y) grams.

dy_8-y

As the chemical dissolves at a rate equal to 10% of (8 — y) per minute, then 10
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Question 12 C
Let V be the volume.
b
Using V= ”J- yzdx we obtain:
a
z
4 2
V= 7Z'J‘ sec” (x)dx
0

SEENE

= [ tan(x)]

= ﬂ[tan GD - tan(O)}

=7

Question 13 B

Let u = sin(x) and so L—ZE = cos(x).
dx

When x=0, u=0 andwhenx:g, uz?.
3 3 du
cos(x) dx = dx dx
1+ sin’(x) 1+u”
0 0
3

Question 14 B
—
AB-v
V]
(=21-11j+9k) - (i —2j - 2k)

L?B| cos (@) =

J12 e (24 (<2)°
242218
- 3

2
3
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Question 15 E

Two vectors, a and b, are linearly dependent if they are parallel.

If a is parallel to b, then a =kb, k#0.

This is the case in E, where a = —%b.

Question 16 D

H

OP =300j + (200cos(30°)i + 2005sin(30°)j)
=100./31 + (300 + 100)]
=100./3i + 400]

Question 17 C

The parametric equations are:

x=t-1 (D)
y=41-1" @

Substituting (2) into (1) we obtain y = 4x2.

If t >0 then from (1) we obtain x > —1.

Question 18 D
The parametric equations are x = t3 - 2t2 —-5and y= t4 + 2t2 - 8t.

So P32 arand D=4’ 148,
dt dt
3
. dy dy_dt .dy A4 +4r-8
Ay _ 4y Al e obtain &Y =4 F41-6
Using 7= 27 X gz Weobwin 25 =—="—0

Vertical tangents occur when ;2) is undefined.
X

This occurs for t=0 and ¢ = g only.
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Question 19 B

v2 = 36x—4x2 and so %vz =18x— 2x2.

ing a=(1?) we obtan 4(1,7) = 15 -
Usmga—dx 3V we obtain Y =18 —-4x.
So a=18 —4x.

When x =9:

a=18-(4)(9)

=-18

So the acceleration is —18 m/sz.

Question 20 A

Let the normal reaction force exerted by the lift floor on the man be R newtons.
The equation of motion is 85g — R = 85a.
So R=85(g —a).

As the downward acceleration is 3 m/sz, we obtain R =85(g - 3).

Question 21 D
The initial momentum (p;) is 0 (kg m/s).
To calculate the final momentum (pf) we need to find the particle’s final velocity.
Taking downwards as a positive, we have u =0, a=9.8 and r=2.
Using v = u + at we obtain:
v=0+(9.8)(2)
=19.6
The final momentum (pf) is 0.25 x 19.6, that is, 4.9 (kg m/s).

Change in momentum (Ap) = Pr=p;
=4.9 (kg m/s)

Question 22 A

Let the tension in the string be 7 newtons.
Resolving forces vertically:

mg = Tsin(x) + Tsin(x)

mg =2Tsin(x)

__mg
" 2sin(a)’
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SECTION 2

Question 1 (9 marks)

a. 3.8-98t=0=1=0.3877... (s)
y(£) = 11.6 + 3.81— 4.9¢°
v(0.3877...) = 12.34 (m) (correct to two decimal places)
b. Solving 11.6 + 3.87-4.9 T2 =0 for T gives T =1.97 (s) (correct to two decimal places).
1.9744 ...
c. d:j J09)2 + (3.8 9.8n7dr
0
d =13.3 (m) (correct to one decimal place)
d.  Whent=19744..., a= tan_1(3'8 ‘9'8519‘9744"')).
So a=86.7° (correct to the nearest tenth of a degree).
Question 2 (12 marks)
a. As a, b, c € R and k# 0, the complex linear factors of P(z) occur in conjugate pairs,
that is, (z — ki) and (z + ki) are both complex linear factors of P(z).
b. Method 1

Pkiy=0= k" —ak’i + bki+c=0
Equating imaginary parts we obtain — ak’ + bk =0= bk=ak’.

Ask#0, b=ak’.

Al

M1
Al

MI1 Al

Ml

Al

M1

Al

Al

Ml

Al

Award Al only if — ak3 + bk or bk = ak3 are seen.

Award as above for P(—ki)=0= Ky akSi—bki + ¢ =0, leading to ak3—bk =0=bk= ak3.

OR
Method 2
P(z)= (z2 + kz)(z2 +mz+n)

Equating coefficients of z3 we obtain a = m.
. . . 2
Equating coefficients of z we obtain b = k"m.
2
So b =ak".

M1

Al

Award Al only ifa=mand b = ak’m are seen.
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e¢.  Pki)=0=k'—al’i+bki+c=0
Equating real parts we obtain k4 +c=0.
2
k :—:%+c:0
4 g
Sob”+a’c=0.

2
d. Solving P(2) =0 for b with ¢ = —%.
a

So b=2a(a+?2) or b=-4a, thatis, b is an even number.

e. If W(u) =0, then mu3+nu2+pu+q:0.

2 ~ . . .
mu3 +nu” + pu+ g =0 (taking the conjugate of both sides)
3 2= - o - = =
mu +nu +pu+q=0(zy+zy+z3+... =70+, +23+...)

a=a when a e R and (£)n=zn.

So m(u) +n(w) +p(i)+q=0 and P(it) =0.

Question 3 (13 marks)

a. The equations of motion are 60gcos(30°) — F.=60a and N —60gsin(30°) =0.

Attempting to solve for a with F,=15gsin(30°) (or equivalent).

a= S_(fﬁ_/g’_____ll (m/sz)

b. Useofvzzu2+2as with u=0, a=

V= V3Og(42/\/§_ 1) (m/s)

g_(_{_g_—__l_) and s = 30.

c. The equations of motion are —F .= 60a and N -60g = 0.
a=-5 (mis%)

N30g(4./3-1)

Use of V2 = u2 + 2as with u = >

V=415g(23-1) (m/s)

, a=—§ and s=15.

M1

Al

MI Al

Al

M1

Al

Al

Al

Al

M1

Al

MI1

Al

Al

M1

M1

Al
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d. Use of y=ut+ 1at2 with y=1.5, u=0 and a = g to obtain 1.5 = %gtz.

2

t=f (s)
g

Use of x = V¢ with V=415g(2./3 - 1) andr= @.

x =10.5 (m) (correct to one decimal place)

Question 4 (11 marks)
T
a. V= ;zj (3cos (2y) + 4)2dy
0
M7 3

= ™)

. dh _dV _dh .. dV
b. attempting to use I dr X v with i 2

h
dv _ d 2
h = an 7rJ‘ (3cos(2y) +4)"dy
0
av 2
So ah =m(3cos(2h) +4)".
dh____ 2
At r(3cos(2h) +4)*
r dh 1 .
When h_é—l’ Py (m/min)
dh _ 2

At r(3cos(2h) +4)*

using either integration or a differential equation solver with t=0 when =0

t= 1—72(9 sin(4h) + 4(24sin(2h) + 41h)) (or equivalent)

When h = Z—f, =441 (min).

M1

Al

M1

Al

Al

Al

Ml

M1

Al

Al

Al

Al

M1

Al

Al
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Question 5 (13 marks)
A+ 3] 410 - (31 - 6j + 6k
a. 6= cos (N 2z D M1 Al
i +3j + k|[3i - 6] + 6|
= cos_l(—i)
9./11
)
=cos |- Al
J11
b. A:1|i+3j+k|\3i—6j+6k\sin(cos‘1(— 1 D MI
200 7 W L L J11
= 9—m Al
2
— —>
.  RM=(=1-24)i+(7+44)j+(-3-4A)k and RQ = 2i + 9j — 5k. Al
(= 1=22)i+ (T +40)j+ (=3 -4Dk) - (= 2i + 9j - 5k)
= ~ = =~ ~ |=,110 M1 Al
[ 21 +9j — 5K]
attempting to solve the above equation for A M1
l:——lé? or A= % Al
— —
d. MP =-2A(-i+2j-2k) and PQ=-1i+2j-2k. Al Al
— —
MP =-2A(PQ) and so M, P and Q are collinear for A€ R. Al
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