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This book presents: 

 worked solutions, giving you a series of points to show 
you how to work through the questions 

 mark allocations 
 tips on how to approach the questions 
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SECTION 1 

Question 1 

Answer is C. 

Worked solution 

The centre of the ellipse is                     with a = 3 and b = 2, so the equation is: 
 

   

2 2

2 2

2 2

3 3
2 2 1

9 4

2 3 2 3
2 2 1
9 4

2 3 2 3
1

36 16

x y

x y

x y

       
    

    
   
    

 
 

 

 

Question 2 

Answer is C. 

Worked solution 

Rearranging the parametric equations to: 

sec(t)
1

2

x



 and tan(t) = 

and using the identity tan2(t) + 1 = sec2(t) gives 

 

 

22

2 2

1
1

9 4

1
1

4 9

xy

x y


 


 

 

If graphs of                                                                                   are sketched then    

and            can be determined from these graphs. 

 

Tip 

 The graphs of                                                      are best sketched using a 
CAS calculator. 

 On the TI-inspire, the correct input would be 
 

 
  

3 3
 , 

2 2

  
 
 

3

y

    2sec 1  and  3tan   for   , 
2 2

x t y t t
      

 
[3, )x 

y R

     2sec 1  a 3 tnd  
2 2 2

an
2

( )f x x x f xx x
   
  


   │ │  

    2sec 1  and  3tan  x t y t  
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Question 3 

Answer is C. 

Worked solution 

For the reciprocal graph of a quadratic function to have vertical asymptotes and a local 
maximum, the quadratic function ax2 + bx + c must have a minimum point (a ൐ 0 ) and have 
two x-intercepts. Hence, the discriminant of the quadratic must be positive, therefore: 

2

2

0

4 0

4

b ac

b ac



 





  

A graphical example of such a quadratic function and its reciprocal is shown below.  
 
 

 
  

x-10 -8 -6 -4 -2 2 4 6

y

-10

-5

5

y 

x 
O 10 810 6 4 2 2 4 6




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Question 4  

Answer is C. 

Worked solution 

If cos(x) ൐ 0 and cosec(x) ൏ 0, then x is in the fourth quadrant, so: 
 

 
 

cot( ) cot( )

cos
cot( )

sin

cot( )
1

cot( )

x x

x
x

x

a
x

b
x ab

  


 


 



 
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Question 5 

Answer is E. 

Worked solution 

From the graph of y = sin–1(x) below, it can be seen that the graph in question has been 
reflected in the x-axis (or y-axis) and dilated by a factor 2 from the x-axis. Hence, b = െ2. 
 

 
 
 

It has also been translated 
1

2
 unit in the negative direction of the x-axis and      unit in the 

positive direction of the y-axis; hence, 

 

Tip 

 Although every graph represented in each alternative can be sketched on a 
graphic calculator, this would be far too time consuming. It is better to use a 
transformation approach, as outlined in the solution for this type of question. 

  

x-1.5 -1 -0.5 0.5 1 1.5

y

– 3
4

– 
2

– 
4


4


2

3
4

4



1
and  .

2 4
c a


 

y 

x O 1.5 1 0.5 0.5 1 1.5

3

4



2



4



4




2




3

4



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Question 6 

Answer is D. 

Worked solution 
Converting z = a + ai, where a	൏ 0, into polar form gives 

3
2  cis

4
az


  

Then 

88 24
2)  cis

4
( az

 
 
 

 

88 ci1 (0)6 saz  , which is located on the real axis. 

So, iz8 is z8 rotated 90° anticlockwise and will be located on the imaginary axis. 

 

Question 7 

Answer is B. 

Worked solution 

   
   

3 2 2

2

2

1 0

1 1 0

1 1 0

z z i z z i

z z i z i

z i z

     

     

   

 

So, 1  and 1z i z    . 

1z i   is the only one of these solutions given in the alternatives. 

Instead of factorising by grouping, alternatives B, C and D could have been substituted into 
the cubic equation. Alternatives A and E could have been disregarded as these are factors and 
not solutions. 
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Question 8 

Answer is A. 

Worked solution 

The distance from any point on the broken line to (0, 0), which is represented by z , 

is equal to the distance from any point on the broken line to the point (1, 1),  which is 

represented by 1 .z i   

Hence, the equation of the broken line is 1z z i    and the equation of the shaded region 

is then 1  ,z z i    as the distance from any point in the shaded region to the point (0, 0) 

is greater than the distance from that point to (1, 1).  

The relationships given can be converted to Cartesian form, although this would be time 
consuming. When converted to Cartesian form, alternative A would be: 

 

   

   2 22 2

2 2 2 2

1

1

1 1

1 1

2 1 2 1

2 2 2

1

z z i

x yi x yi i

x yi x y i

x y x y

x y x x y y

y x

y x

  

    

    

    

      
 
 

 

 

which is the area under the line 1.y x    

Alternatives C and D can be disregarded as these represent rays originating from (1, 0) and 
 0, 1  respectively. 
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Question 9 

Answer is B. 

Worked solution 

2

1
z

i





 can be rearranged to 

2
.

1
z

i



  

Dividing gives  

2 1

1 1
2 2

2
1

i
z

i i
i

z

z i


 

 




 

  

And 1z i    

 221  1

So, 2

tan( ) 1

z

a



  


 

  

,
4

 
   as z  is in the fourth quadrant. 

 

Question 10 

Answer is B. 

Worked solution 

 2

2

2

2

15 13
 

13   13

15 13 13
 

13 13

1
13

15

15

13

  

dx
x

y dx
x

dx
x

dy

dy

dx x

y












 


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Question 11 

Answer is D. 

Worked solution 

Let  1 ,  thenu x  1 and 1 .
du

x u
dx

      

When 5,  4.

And when 3,  2,  so

x u

x u

  
  

 

5

3  

2 3
( )

1 

x
dx

x


   

becomes  

 4

2  

2 3 1 
( )

u du
dx

dxu





 
    

4

2  

3  1
( )

u
du

u






    

2 1 1

2 2

4

(3 )u u du
 



   
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Question 12 

Answer is D. 

Worked solution 

3

2

2

3

3

2

500 cm /min

1

3

1

3 4

1

3 16

48

16

dV

dt

V r h

h
V

h

h
V

dV h

dh

h

V















   
 
 
 
 






 

2

Now .

16
500.

When 10,  20.

20
So,  cm/min

dh dV dh

dt dt dV
dh

dt h
d h

dh

dt









 



 

 

Tip 
 You need to consider that the required derivative might be in terms of a 

variable that is different from the one that needs to be substituted. In this 

problem 
dh

dt
 was in terms of  h and the substitution was d = 10, meaning it 

was necessary to find the value of  h that corresponded to d = 10. 
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Question 13 

Answer is B. 

Worked solution 

Now 

     
 
 

 

2 2

2

2

2  1
 

22 2

2

2

2

2

2

x A B

xx x

A x B

x

Ax A B

x

A


 

 

 




 




 

  

     2 2

2  1

and 2 1

5

2 5
    So, 22 2

x
dx

A

x

B

x

B

dx
x


 

 

  
  

 

  

 
 
Question 14 

Answer is D. 

Worked solution 

~

~ ~ ~

~ ~

~
a

1 1
(a ) a

2 5
3 1

a
10 2

b

b

b

MP MA

M

BA

AP

MP

P

 

 

  

 











 
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Question 15 

Answer is A. 

Worked solution 

If 
~
a  and 

~
b  are linearly dependent, then 

~ ~
a b,n  where n is a constant. 

~ ~~ ~
2 j k j kn m     

 
  

~ ~~ ~
2 j k j kn mn     

So,  2

1

1

2

n

mn

m

 
 

 

 

 

Question 16 

Answer is D. 

Worked solution 
3

3 3

6

Now 

3

3

 x

x x

x

v e

dv

dx
a v

a

a e e

e








 

 
 

Question 17 

Answer is B. 

Worked solution 

~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~

~ ~~

~ ~~

1 1
ˆ ˆb a  . a (i j k) (6 i j k) (6.   3 2   3 2

1
.  3 2
7

i j k)
7 7

11
(6 i j k)

7
11

(6 i j  k)
4

3
9

2

    

 



          



 
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Question 18 

Answer is A. 

Worked solution 

   2cos 2   and  cosx t y t   

  
   

 

 

2Now cos 2  2cos

2  1

2 1

1
1  and when 0,  then 1 1

2
1

1 , 1

1

 1
2

t t

x y

y x

y x t x

y x x



 
 

     

    



 

 

Question 19 

Answer is B. 

Worked solution 

  
 

The intercept is 
22

3
 (obtained from determining the straight line equation 6 44v t   ). 

Area under trapezium representing easterly displacement
1 22 160

6 8 .
2 3 3

      
 

  

Area under triangle representing westerly displacement
1 23 115

10
2 3 3

    . 

Resultant displacement is 
160 115

15 m east of .
3 3

O    

 

  

t (s) 

 

   (0, 8) 

 

O 

22
,0

3
 
 
 

 (m/s)v

(15,  0)

(9,  10)

(6, 8) 
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Question 20 

Answer is A. 

Worked solution 

   1   1

1 0 0 0

1

1

  and  

  

,

( 0.5 ,  

 0

)

( )0.5 2 0   

1

n n n n n ny y hf x y x x h

y y f x y

y

y

 



   


  


 

 

2 1 1 1 1 0

2

2

   0.5 ,   and   2.5

  1 0.5 2.5 1

1

( )

( )

.750

y y f x y x x h

y

y

    
  


 

 

Question 21 

Answer is B. 

Worked solution 

Let 3M = mass of larger object. 
Then M = mass of smaller object. 
 
Equations of motion on each mass are: 

 
 

3 – 3   1  larger mass

–   2  smaller mass

Mg T Ma

T Mg Ma




  

 
(1) + (2) gives: 

2

2 4

 m/s
2

Mg Ma

g
a




  

 

Tip 

 For connected particles, the equations of motion must be written for each 
particle separately, knowing that the acceleration is the same in both 
equations. 
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Question 22 

Answer is C. 

Worked solution 

 
 
 
 
 
 
 
 
 
 
Since the lift is accelerating downwards: 

30

30 3

3 30

(g 3 30

30

3

43

)

kg

mg g ma

mg g m

mg m g

m g

g
m

g

m



 
 
 








 

 
 
 
 
  

30g 
a = 3 m/s2

mg 
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SECTION 2 

Question 1a. 

Worked solution 

 

 

 

-intercept let 0

-intercept let 0

Intercepts are ,0  and 0

0

:

, .

:

ax

x y

y x

b
b

b

b
x

a

a

y b





 
 








 


 

 

Mark allocation: 1 mark 

 1 mark for  ,0  and 0, .
b

b
a

 
 
 

 

 
Question 1b. 

Worked solution 
2

0

3

23

b y b

a

b

V dy

V
a





 



 
 

 
 

 

Mark allocation: 2 marks 

 1 mark for using the correct formula for rotating around the y-axis; i.e. 
2

0

b y b

a
V dy  

 



   

 1 mark for correct answer in terms of a and b; i.e. 
3

23
V

b

a


  
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Question 1c. 

Worked solution 

 

 

2

2

2

2

2 1
3 sin

 

2 1
3 sin

2 1
(3 )sin( ) (sin( ))3

2 1
(3 ) sin( ) (sin( ))3

3 sin( )

y x
y y

d d d
y x

dx dx y dx y

d d d dy d dy
y x x y

dx dx dy y dx dy y dx

d dy d d dy d dy
y x x y

dy dx dx dy y dx dy y dx

dy
x

dx

 

   
   

   
               

  

  

  
       

     



 
 

 
 

3 2

3 2

3 2

4

3

4 1
3 cos( )

4 1
3sin( ) 3 cos( )

3 cos
4 1

3sin    

3

3 sin  

os

 

c

 4

dy dy
y x

y dx y dx

dy
x y x

dx y y

y xdy

dx x
y y

y xdy

dx y x y


 

 
    

 



 




 
 

 

Mark allocation: 4 marks 

 1 method mark for using implicit differentiation 
 1 method mark for correctly using product rule in the implicit differentiation process 

 2 marks for correct answer 
 

  3 2

3 cos
4 1

3sin    

y xdy

dx x
y y




 
 or 

 
 

4

3

co3

3 sin   

s

4  

y xdy

dx y x y




 
. 

 Deduct 1 of these marks for a minor error 
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Question 1d. 
Worked solution 

2

2

2

2

2 1
When ,  3 sin( )  becomes:

2 1

2

2 0

(2 ) 0

2 only sin e 0.c

x y x
y y

y y

y y

y y

y y

y y

  







 




 

 
When   and 2

6
1 1

 
2 4

24

x y

dy

dx

dy

dx

 






 

 

 

( )

24 24 2

24 an

Equation of

d 24 2

 tangent is:

2 24y x

y x

a b






   
   

    

 

 

Mark allocation: 3 marks 

 1 mark for determining y = 2 when x =	ߨ 

 1 mark for calculating 24
dy

dx
   at the point  , 2  and finding the tangent’s 

equation; i.e. 24 24 2y x      

 1 mark for stating 24 and 24 2a b       
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Question 1e. 

Worked solution 

 

3

3

2
 (from part )

3

12 1
=

216

V
b

a

V



 





b

 

 

Mark allocation: 1 mark 

 1 mark for 
 3
12

216

1
= .V
  

 

  



20 

SECTION 2 
Copyright © Insight Publications 2014 

Question 2a. 

Worked solution 

 

  

100

100 , w

(100 ), 0

1

100 –   

1 1

100 
1

log 100 

( ) log 100 

100

here 

100

bt bc

b

e

e

b

bc

bt

t

t

c

dT
b T b

dt
dt

dT b T

t dT
b T

t T c
b

b

T e e

T A

t c T

A

T

e A e

T e

e




 



  







  

  

 

  

 



 



  

When 0,  3 97

So,  100 97 bt

t T A

T e

   

 
 

 

Mark allocation: 4 marks 

 1 mark for inverting (100 ).
dT

b T
dt

   

 1 mark for correctly antidifferentiating to 
1

log 100 .et T c
b


    

 1 mark for rewriting the constant and writing it as 100 .btT Ae   
 1 mark for evaluating A = 97. 
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Question 2b. 

Worked solution 

 

 
 
 
 
 
 
 
 
 
 
Verified by differentiation when equation (1) is compared with equation (2). 
 

Mark allocation: 2 marks 

 1 mark for differentiating 20k tT Be   to get .k tdT
kBe

dt
    

 1 mark for substituting 20k tT Be   into ( 20)
dT

k T
dt

    to get .
 

k tdT
kBe

dt
    

 No credit should be given if the differential equation ( 20)
dT

k T
dt

    is solved by 

integration to obtain 20.k teT B    
  

 (1)
 

Also ( 20)
 

(   20 20) since 20
 

 

If 20

then 

(2)

k t

k t

k t k t

k t

e

dT
kBe

dt
dT

k T
dt
dT

T B

k Be T Be
dt
dT

kBe
dt





 



 

  

     








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Question 2c. 

Worked solution 

1

1

1

1 1

3

20,  

When ,  60 and when 3 ,  40.

60 20 (1)

40 20  (2)

k t

k t

k t

T Be t t

t t T t t T

Be

Be







  
   

 

 

  

 
From equation (1):        From equation (2): 

1

1

1

60 20 

40

40
log

k t

k t

e

Be

e
B

kt
B





 



    
 

  

 
Hence: 

3

2 2

3

3

3

2 3

2

1
log log

3

3log log

40

20

2

40 20

40 20

40 20

40 20

20

40

0

40 2

4

e e

e e

B B

B B

B

B B

B

B

B

B

B

   
   
   
      
   

   
 















 

 

Mark allocation: 3 marks 

 1 mark for setting up equations 160 20 (1)k tBe   and 1340 20 (2)k tBe    

 1 mark for using substitution for 1kt  to obtain 
40 1

log log
3

20
e eB B
   
   
   

   

 1 mark for showing that 40 2B    
  

1

1

3

3

1

40 20 

20

2
l

3

01
oge

k t

k t

Be

e
B

kt
B





 



    
 
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Question 2d. 

Worked solution 

13

1

40 20

1  20
log

3

k t

e

Be

kt
B



 



 







 

1
If 40 2   and ,  then:

4
B k   

1

1

1

1

1 1  20
log  

4 3 40 2

4  20
log  

3 40 2

1.38

3 4.16

e

e

t

t

t

t

    
 

    
 




 

The total time was less than 5 minutes. 
 

Mark allocation: 2 marks 

 1 mark for substituting 
1

4
k   and 40 2B   into 1340 20.k tBe    

 1 mark for finding 13 4.16.t    

 

Question 3a. 

Worked solution 
                                               
                             

 
 

 
 
 
 

Mark allocation: 1 mark 

 1 mark for three arrows inserted in the correct direction on the diagram. Arrows can 
be labelled weight, normal reaction and frictional force. 

 
  

 

W

F N 

60
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Question 3b. 

Worked solution 

 
 
 
 
 
 
 
 
 
Resolving forces acting perpendicular to plane: 
10g cos(30°) = N, where N is the normal reaction. 
 
Resolving forces acting parallel to plane:  

 10 sin 30 10g F a     

 
Now 

 where  is the frictional force and  is the coefficient of friction

10 cos 30

5 3

( )

)

2

(

N F

g

g

F

F

F

 







 

So, equation of motion becomes: 

 

5 3
10 sin(30 ) 10

2

5 3
5 10

2

2 3 4

2 3

4

g
g a

g
g a

g g a

g
a

  

 

 




 

Mark allocation: 3 marks 

 1 mark for determining the frictional force 
5 3

.
2

F
g

  

 1 mark for the equation of motion 
5 3

10 sin(30 ) 10 .
2

g
g a     

 1 mark for showing 
 2 3

4

g
a


  

  

 
30° 

10g 

60
F

N
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Question 3c. 

Worked solution 

 

 

 

2 2

2 3
,  50

4

2
25

2 3

2
50

 metres

 

2 3

,
g

v

v u
s

a

u

s

a

g

s
g


















  

 

Mark allocation: 2 marks 

 1 mark for using   

 1 mark for obtaining the exact value of the distance 
 

50
 metres

2 3
s

g



 

 
Question 3d. 

Worked solution 

Exit speed from upper plane is 5 m/s. 

So velocity 

 

 

 

Mark allocation: 1 mark 

 1 mark for writing and evaluating 
~ ~

5cos(30 ) i 5sin(30 ) j    to 
~~ ~

5
v i j

2

5 3
m/s.

2

 
 
 

   

  

~ ~

~ ~~

5cos(30 ) i 5sin(30 ) j

5
v i

5 3
 m/sj

2 2

 

 
 
 

 

 

2 2

2

v u
s

a



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Question 3e. 

Worked solution 

 

 
~

~~ ~

2 2
1

~ ~ ~

 a  0.4 i  –  0.4  j 

 0.2 i –

(

  0.2  j c   

)

v ( )

t t g t

t t gt t

 

  
 

1
~ ~~ ~ ~~

5 3 5 5 3 5
When 0,  v i j c i  j 

2 2 2 2
t

   
        

   
 

2 2

~~ ~

3 2 3
2

~ ~ ~ ~

5 3 5
v( ) 0.2 i  0.2 j 

2 2

5 3 1 5 1 1
r( ) i  j c

2 15 2 2 15

t t gt t

t t
t t gt t

          
  

           
  

 

2~ ~ ~~ ~~

3 2 3

~ ~ ~

When 0,  r 0 i   0 j  c   0 i   0 j

5 3 1 5 1 1
Hence, r( ) i j

2 15 2 2 15

t

t t
t t gt t

     

          
  

 

The lower plane has the Cartesian equation y x  , so when the ball lands on the lower plane 
the y coordinate of the position vector = –x coordinate of position vector. 

3 2 3

2

2

5 3 1 5 1 1

2 15 2 2 15

5 3 5 1

2 2 2

1 5 5 3
0

2 2 2

t t
t gt t

t t
gt

t t
gt

   

 

  

 

 
0 and  5 5 3 0

5 3 1  
0 and 

t gt

t t
g

   


  

 

Hence, 
 5 3 1  

t
g




 seconds is the time when the ball is in the air. 

So, a = 5 and b = 3. 
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Mark allocation: 5 marks 

 1 mark for the first antidifferentiation and determining 1
~

c .

2 2

~~ ~

5 3 5
v( ) 0.2 i 0.2 j 

2 2
t t gt t

          
  

 

 1 mark for the second antidifferentiation and determining 2
~

c .  

3 2 3

~ ~ ~

5 3 1 5 1 1
r( ) i  j 

2 15 2 2 15

t t
t t gt t

          
  

 

 1 method mark for equating the components of the general position expression 
according to y x  . 

3 2 35 3 1 5 1 1

2 15 2 2 15

t t
t gt t     

 1 mark for factorising and solving to obtain t = 0 and 
 5 3 1  

t
g


 . 

 1 mark for evaluating a = 5 and b = 3. 
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Question 4a. 

Worked solution 

 

2

2

1 2

2

2

2 2cis( ) in polar form

Let cis ,  then

( cis ) 2cis(( ) 2 )

cis(2 ) 2cis(( ) 2 )

2  since 0 and

2 = 2k , for 

,  for 
2

So,  and 
2 2

Hence, 2 cis  and 2 cis
2

 2 0

 2

 

z r

r k

r k

r r

k Z

k k Z

z

z

z

z

z




  

  

  
 

 






 

 

 
 

  




   
 

 

 

,
2

 
 
 

 when using the principal argument

Arg .z     
 

Mark allocation: 3 marks 

 1 method mark for using either a valid polar or Cartesian process to solve z2 + 2 = 0 
 1 mark for two correct solutions 
 1 mark for plotting solutions correctly on the Argand diagram 

  

Im( )z

Re( )z
O 
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Question 4b. 

Worked solution 

1 2 1 2    1,  where 2  and  2 .

Let  .

z z z z z i z i

z x y i

     

 



   

   
   

   
     

 
 

2 2
2 2 

2 2
2 2 

2 2 2
2 2 2

2
2 2 2 2 2

2
2 

2  2 1

2 2 1

2  2  1

2 1  2  

2 1 2  2  2

2 2 2 1 2  2   2 2 2

4 2 1 2  2  

x y i i x y i i

x y i x y i

x y x y

x y x y

x y x y x y

x y y x y x y y

y x y

     

     

     

     

        

         

    



 

 
Squaring both sides gives: 

2

2

2

2

2

2

2 2

32 8 2 1 4  2 2 2

32 8 2 1 4 4

( )

)

28 4

 8

7

2 8

y y x y

y x

y

y y x y y

    

  



 







 

 

Mark allocation: 3 marks 

 1 mark for substituting let z = x + yi to obtain    2 2 1x y i x y i       

 1 mark for squaring both sides      2 2 2
2 2 22 1 2  2  2x y x y x y          

 1 mark for simplifying to 2 228 4 7y x   

  



30 

SECTION 2 
Copyright © Insight Publications 2014 

Question 4c. 

Worked solution 

2

2

2

2

2

2

28 4 7

4
4 1

7

1
1 7
4 4

x

x

y

y

y x





 





 

7 1
So,   and  .

2 2
a b   

Vertices are 
1

0, .
2

  
 

  

Asymptotes are 

1

2
7

2

y x    or  
7

.
7

y x   

 

Mark allocation: 3 marks 

 1 mark for writing hyperbola as 
2 2

1
1 7
4 4

y x
   and identifying 

7 1
 and  .

2 2
a b   

 1 mark for vertices 
1

0, .
2

  
 

 

 1 mark for asymptotes 
7

.
7

y x   
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Question 4d. 

Worked solution 

 

 

Mark allocation: 2 marks 

 1 mark for sketching the hyperbola 2 228 4 7y x   and straight line y = 0. 

 1 mark for shading the area between Re(z) axis and the upper branch of hyperbola, 
including boundaries. 

  

Rez-10 -5 5 10

Imz

-3

-2

-1

1

2

3

Im(z) 

Re(z) O 10 5 5 10

3

2

1

1

2

3
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Question 4e. 

Worked solution 

The solutions are   2  and  z i z a ai    (conjugate root theorem), so the factors are: 

2 2 2

2 2 2

4 3 2 2 2

2 2  ) )  0

( 2)  0

 ( 2)  2 2 0

2 (2 2

( )( )[( )][( )]

[( ) ]

(

4 0

)

) 4

z i z i z a ai z a ai

z z a a

z z az a

z az a z az a

      

   

  

     


 

Equating coefficients with  4 3 2 2 2 3 1 4 12 0z az a z az a       gives  22 2 2 3 1   a a  

or 24 12 .a a   
Solves to either  a = 0 or 3. 
So,  3 since \ 0 .a a R   

 

Mark allocation: 3 marks 

 1 mark for finding all four solutions in terms of a. 

 1 mark for expanding factorised version to  4 3 2 2 22 2 2  4 4 0.z az a z az a      

 1 mark for equating coefficients to solve for a = 3. 
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Question 5a. 

Worked solution 

  1
– 2

2
k x k xey e

k
   

The point (a, b) lies on the curve, so the height of each post is   1
– 2 .

2
ak akb e e

k
   

 

Mark allocation:1 mark 

 1 mark for   1
– 2 .

2
ak akb e e

k
   

 
Question 5b. 

Worked solution 

 

 

 

  

 

 

 

 

 

2
 

2
2 2  

2
2 2  

1
– 2

2
1

2
1

2

1

1 1

2

4

1

4

1

4

k x k x

k x k x

k x k x

k x k x k x k x

k x k x

k x k x

e e
k

dy
ke ke

dx k
dy

e e
dx

dy
e e e e

dx

dy
e e

dx

dy
e e

dx

y 





 









   


 





 


   
 

   


  

 


 

 

Mark allocation: 2 marks 

 1 mark for  1
.

2
k x k xdy

e e
dx

   

 1 mark for squaring to get  
2

2 2  2
1

.
4

k x k xdy
e e

dx
  


 


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Question 5c. 

Worked solution 

 

2

0

2 2  

0

2 2  

0

2 2  

0

2 

0

 

0

0

1

1
1  –  2  

4

4    –  2 

4

 2   

4

    
  

2

( )

1 1
     

2

2

1

 

2

2

2

1

a

a
k x k x

a k x k x

a k x k x

a k x k x

a
k x k x

a
k x k

a

x

kak

dy
dx

dx

e e dx

e e
dx

e e
dx

e e
dx

e e dx

l e

l

l

l

l

l

l

l e
k

e
k k

e
k















   
 

 

 

 

 
 
 



 













  
 

  













1 1

1 1ak ak

k k

l e
k

e
k



    
 

   
 

 

 

Mark allocation: 4 marks 

 1 mark for substituting 
2 2  

0

2

 to obtai
4    –  

.  
2 

2
4

n
a k x k xdy

l
x

e e
dx

d

    
     

 1 mark for simplifying to 
 

2

0

    
 .

2
2

a k x k x

l
e e

dx
 

 






  

 1 mark for finding square root of integrand  

0

( ) .
a

k x k x dl e e x   

 1 mark for integrating and evaluating to obtain 
1 1

.akakl e
k k

e    
 
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Question 5d. 

Worked solution 

Substitute  1 1
 and 5 into 2  to obtain

8 2
ak akek b b e

k
     8 85 2

a a

a e e
 

   
 

. 

a = 8.53385 (Using solve function on CAS.) 

Substituting this value of a into 
1 1 akakl e
k k

e    
 

 gives: 

l = 20.49 metres 

 

Mark allocation: 3 marks 

 1 mark for substituting  1 1
and 5 into 2  to obtain

8 2
ak akek b b e

k
     a. 

 1 mark for using CAS to evaluate a = 8.53385 

 1 mark for using 
1 1 akakl e
k k

e    
 

 to evaluate l = 20.49 metres. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

END OF SOLUTIONS BOOK 


