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MARKING SCHEME (EXTENDED ANSWER QUESTIONS)

1
(A4><E i) means four answer half-marks rounded down to the next integer.
Rounding occurs at the end of a part of a question.
M1 = 1 Method mark.

Al =1 Answer mark (it must be this or its equivalent).

H1 = 1 consequential mark (His/Her mark...correct answer from incorrect statement
or slip).
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QUESTION 1 Answer is D

47:) J3

imaginary part = rsin(9)i = ZSin(? i= —2x7i =—3i

QUESTION 2 Answer is E

The vector AB :41+81+16I§ =2(2!+81+16I5)
%

The vector =(x—4)i+4 j+8k
BC - -

. The A, B and C are collinear.

QUESTION 3 Answer is B

- 6iand 2i are continues lines
.2<1Im(z) <6

“ Region enclosed by angle%r with a continues line and angle %with doted line
LA Argz < 3z
4 4

{z:2£|m(z)§6,%<Argzs?’Tﬂ}

QUESTION 4 Answer is D
When b=0.
XZ y2
Elli ith ti +—=1
ipse with equation (%j 36
a
X2 y2
“» The ellipse only touches the hyperbola with equation Y =1.

.. The ellipse and the hyperbola only intersect at the two x-intersects of the
hyperbola (3, 0) and (-3, 0)

a=4
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When b e[-3,3]

The ellipse and the hyperbola maximum can have 2 points of intersection.

When b e[-6,6]

The ellipse and the hyperbola can have maximum 3 solutions. Use CAS to solve the

equations of the ellipse and the hyperbola when b =6, there are only 3 intersection
points shown.

QUESTION 5 Answer is C

hvida) - [(1+ iﬁﬂé - {2%3(%”}};

Three equivalent representations are taken since we need this expression’s cube root.

Therefore:
(1+i\/§)4 =16 cis(4—ﬁj, 16cis(10—7zj, 16cis(16—”j
3 3 3
Therefore:
4 1 1 1
(1+i\/§F = 163cis(4—7[) 163cis(10—7[), 163cis(16—7[]
9 9 9
QUESTION 6 Answer is E
a 1
dx=1
'[_a 4+9x° 2tan”* [3_aj =6
1 2
J:a 4 2 dx =1 tan™! (3—aj =3
§+x2 2
2 tan(3) :37
ij‘a S dx=1 2tan(3)
6J-a 4 2 =
9" 3
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QUESTION 7 Answer is C
z =cis(6)
z" —in =17"— 7" =cis(n@)-cis(-no)

= 2isin(ng)

QUESTION 8 Answer is E

3x*+9
2x —1)x* +2x +2)

Use CAS: I( dx:gln(]Zx—ﬂ)—3tan‘1(x+1)

~a=2 p=3 9 fan 1
.a=- b=3 dx(tan (x+1))= T oxis

) B 1
9(x)= X2 +2X+2

QUESTION 9 Answer is D

sin(t + 2t)= sin(t)cos(2t)+sin(2t)cos(t)
= sin(t)[L— 2sin?(t)|+ 2sin(t)cos?(t)
=sin(t)— 2sin®(t)+ 2sin(t {1 sin’(t))

=sin(t)— 2sin®(t)+ 2sin(t) - 2sin’(t)
=—4sin’(t)+ 3sin(t)

QUESTION 10 Answer is B
ﬁ_ 1
do —k(9-10)

L, (60)
k

L, (60)
k

.'.t:—%Ln(9—10)+

[EEN

==(L,(60)-L,(9-10))

=~

Subt=10 =40 Use CAS to find k.

Sub t = 15. Use Solve() in CAS to Solve &
0=31.21C
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QUESTION 11 Answer is B

Wheny=2, x>0

2x> =2
x=1

. 1 2\2
..njo(z—zx)dx

nJ'Ol(4 8% + 4x%) dx

QUESTION 12 Answer is B
a1
dQ 4(100-Q)

t= —%In(]lOO— Ql)+c

4(c—t)=In(100-QJ)

e*=100-Q
Q=-e““"+100
QUESTION 13 Answer is C
AB_-36+4+6_-26 .

AT Ve
QUESTION 14 Answer is D

t sin(9) 1
;[ (1— cos(@)jdx 2
L, (- cos(ej)]% = %
L, (L~ cos(a)|):%

e2 =1-cos(a)

N |-

cos(a)=1-e

a= cos’l(l—\/g)
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QUESTION 15 Answer is B
walline X+y=1

1-sin()
——~ =1
2sin(9)

1-sin(@) = 2sin(9)
(1-sin(@))’ = 4sin*(9)
1-2sin(@)+sin?(0) = 4sin*(9)
0 =3sin?(#)+ 2sin(9)-1
sin(@):% or sin(@)=-1

* Finding the acute angle

. 1

ssinl@)=—
(0)=7
H:Sin‘l(lj
3

QUESTION 16 Answer is C
dv__1
dt 2
at_-2
dv. v
t=-2In(v)+c
Subt=0 v=40
¢ =21In(40)

t =-2In(y|)+ 2In(40)

t= 2In(4—0j
v

0.5t = In(ﬂ]

v
gost _ 40

v
v =40e
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QUESTION 17 Answer is B
150km/h = 2.5km/min

6 _ox dd
dt  dt  dt
2.5 km/min
_25x3d x
dt
=25x X

X - ¢t
When t=1 x=25

dd 25x25 .
— =—— =1.95km/ min
dt  /10.25

d=+2%+x?
=4+ X
dd X

&_\/4+ X2

QUESTION 18 Answer is D
r=4e™i-4e""j+c
O=4di—4j+c
c=-4i+4j
r=(4e°% — 4)i —(4e°% — 4)j
= 4(e°* —1)i —4(e° -1}

QUESTION 19 Answer is A
A 49 -39 _9
4+7 7
QUESTION 20 Answer is E
m m, —m,
_m,g—xmg
m, —m,
_ (mz _:uml)g
m, —m
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QUESTION 21 Answer is C
Let mass M; moving direction as +

Total momentum = 7M;+(-5M,)
:7M1'5M2

QUESTION 22 Answer is B

%:10t—4
dt

Y 10t
dt
%—%xﬂ—lot_ﬂ’
dy dt dy 10t
Letgzo

dy
10t-4=0

t=0.4
Sub t =0.4 into x (t) and y(t)

X(0.4)=-2.8
y(0.4)=5.8
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SECTION 2

QUESTION 1
a (i |1+i|=\/§:>‘(1+i)k‘=(\/§)k ok

(i) x+iy=@0+i)"

A X+y? _y2¢

- x? +y?=2% asrequired.
b. () 1+i =J§cis(%j
. . T
1-i= ﬁms[— Zj
2n 2n
(i) (@+i)*" +@-i)™ :(ﬁd{%D +(x/§cis(— %D

= (ﬁ)zn cis %Zj + (ﬁ)zn cis(— nTﬁj
n=2: (L+i)* +@-i)* =4cis(z)+ 4cis(- 7)=-8
n=3: (1+i)°+@-i)° =80is(37”j +8cis[—37ﬂJ =0

n=4: (1+i)®+@—i)® =16cis(27)+16cis(- 27) =32

(i) @)™ +@A-0)? = (ﬁ)z“cis[%”j . (ﬁ)z”cis[_ ”7”]
=2" cos(nT”j + isin(n%j +2" cos(— nTHJ +i sin[— n%j
=2"2 cos[n—”j =2 cos(n—”j
2 2

n is an odd integer: cos[%[J:O. Therefore (1+i)*" +(1—-i)*" =0

n/2 is an odd integer: cos(nTﬂJz—l. Therefore (1+i)?" + (1-i)*" =—2"*

Note: If n/2 is odd then n is a multiple of 2 but not a multiple of 4.

n/2 is an even integer: cos(%):l. Therefore (1+i)?" + (1—i)?" =2

Note: If n/2 is even then n is a multiple of 4.
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(i) From De Moivre’s Theorem k=2.

cis(30)
cis(20)

(i) A+iB= cis(ﬁj ' cis(z—”j ; cis(g—”J - cis[zn—”j
n n n n

(iv) A+iB is a geometric series with a= cis(ZJ, r= cis(zj and number of terms
n n

(i) cis(30 — 20) =cis(¥) .

equal to 2n.

From the given formula:

{5+
=g
cis[:j(l —cis(27))
of})

=f

Therefore A=0 and B=0.

A+iB=
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QUESTION 2

. dt -50
TR
av v(d+v?)
\')
St=- idu+0
ul+u?)
10
5 5
Substitute v=5: ..t=— 5—02du= 5—0de
u@+u“) v(L+Vv)
10 10
(i) t=0.7318seconds.
_ 2
b, () vIoZvlEv)
dx 50
dv_—(@+v?)
dx 50
.. dx -50
i)y —=
® dv  1+v?2

x=—j 502 dv=-50tan*(v)+C.
1+v

Substitute v=10 when x=0: C =50tan*(10).
Therefore x =50tan*(10) —50tan*(v) .

X a4 a4
(iii) %ztan (10) —tan—(v)

. X =) gl
..tan(Soj tan(tan (10) — tan (v)).

tan(A) — tan(B) .
1+ tan(A) tan(B) -

Apply the double angle formula tan(A-B) =
X 10-v
tan| — |=——
(50) 1+10v
= tan X +10vtan X =10-v
50 50
=10vtan X +v=10-tan X
50 50

10 — tan X

50
>V=———""7
1+10tan(xj

50

as required.
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10 - tan(s);J
c. () 0=————————<:10—m%§%)=&:x=50mn1&@:7&5&

1+10 tan(xj
50

Therefore the particle is stationary at 73.56 metres to the right of O.
2
-v(@d+v) o

50

Therefore the velocity does not change.
Therefore the velocity remains stationary at 73.56 metres to the right of O.

(i) Substitute v=0 into a= 0.

QUESTION 3
a. Require 9-x?>0 and —1£§£1.Therefore -3<x<3=D=[-33].

2.8
2
b. (i) V=ﬂjy2 dx= 7 (x\/9—x2 +2arcsin[§D dx .

0

(i) V =180.5 cubic units.

c. () f)=vo-x?- X 2

+
Jo—x2  Jo—x?

9—x?
C11-2x?
9-—x?

(~4x)W9—x2 — Jé:i?Jal—Zxﬂ
- X

9-—x2

(i) 70 =

_ (=409 - x*) + x(11-2x%)

(9_X2)3/2
_2x% - 25x
- (9—X2)3/2
2 —
:—)Eézx 2)32/52) as required.
- X
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p

2
d. 11— 2x dx={x\/9—x2 +2arcsin(§ﬂ

9- x2

-P

B_(_ Pyo - p* +2arCSin(_TpD

=2p49- p2 +4arcsin(§}=2(p 9_ pz +2arcsin(§n_

wl|o

= ( P9—p? + 2arcsin(

e. The maximum value of | = py/9—- p? + 2arcsin[§j is required.

dl _11-2p?

From part (c):
part (c) P Jo

. . . . . 11
From the sign test there is @ maximum turning point when p = ‘/3 .

Therefore the maximum value occurs when p = ‘/% .

Inflection points of f(x) occur at values of x for which f’(x) has turning points.
x(2x? — 25)
(9 _ X2)3/2

From the sign test f'(x) has a turning point when x=0.

Stationary points of f'(x): f"(x) = =0 when x=0 or x=%

St

Therefore f(x) has an inflection point at x=0.

f (x) has no inflection point at x ==+ because these values of x lie outside the

5
2

domain D (see part (a)).
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QUESTION 4

a.

(0.441, 3.557)
2T (pil2, 1)

(-pif2, -1)

_ 1 N sin(2x) 0
sin(x)  cos(2x)

1 2sin(x) cos(x) 0
sin(x)  2cos®(x) -1

2c0s”(x) -1+ 2sin(x) cos(x) 0
2sin(x)(cos? (x) —1) -

= 2c0s%(x) + 2sin?(x) cos(x) =0
= 2c0s%(x) + 2(1L - cos?(x)) cos(x) = 0
= 2c0s%(x) + 2cos(x) — 2cos®(x) =0

= 2c0s®(x) —2cos? (x) — 2cos(x) +1=0 as required.
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dy _ —cos(x) . 2

C- =
dx sin?(x) cos?(2x)
2 HJ
- cos(x? c0s“(2x) + 2sin“(x) 0
sin?(x) cos? (2x)
= —c0s(x) cos? (2x) + 2sin?(x) =0
= —cos(x)(2cos?(x) —1) + 2(1— cos?(x)) =0
= —4¢0s° (X) + 4¢0s> (x) — cos(x) + 2 — 2¢os? (x) =0
= 4c0s°(x) — 4cos® (x) + 2cos? (x) + cos(x) —2=0 as required.
d. f(r—x)= 1 N sin(z-2x) 1 N sin(2x) 1 sin(2x)

Csin(z—x)  cos(r—2x) sin(x) —cos(2x) sin(x) cos(2x)

1 N sin(z+2x) 1 N -sin(2x) -1 N sin(2x)

f(z+x)= sin(+Xx) cos(z+2x) -—sin(x) -—cos(2x) sin(x) cos(2x)

Therefore f(z—-x)+ f(z—x)=0.
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QUESTION 5

a. Att=-1:
Position of satellite: r(-1)=-i-10 j-2k.
Position of island: L =i-12j-2k ~

Position of satellite relative to island: r(-1)-L=-2i+2]j.
Distance: |-2i+2jl=+/(-2)% +(2)% =8 =242.

b. Relative position of satellite at time t: r— L = (2t) i+ (t? +1) j+ t? -1 k..

Distance: ‘(2t)i+ (t? +1) j+ (t* -1 If‘:\/(Zt)z +(t2+1)2% + (12 -1)?

Va2 4 tf 12t 14+tt —2t2 41
=J2(t* +2t2 +1)

=V24/(t? +1)
=/2|t2 +1]

=2(t? +1) as required.

c. From part (b) the minimum distance occurs when t=0 and is equal to V2.
d. Att=-1:

Position of satellite: [(—1) =— i—lO - 2I5 .

Position of satellite relative to islan;j: - 2[+ 2].

Att=-2: ~

Position of satellite: [(—2) =—4 i+ 5j+ 3[( .

Position of satellite relative to islan(;: - 4[— 5j+ If .

From the dot product:

Angle between vectors —2i+2j and —4i-5j+k is

cos‘l( 8+10 chos‘l(gjz25.84°.

V/8+/50 20

Angle to nearest degree is 26°.
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QUESTION 6
a. Net force perpendicular to slope: 0=N —1200g cos(8°) Q)
Net force parallel to slope: (1200)(0.25) =T —1200g sin(8°) — 0.09N (2)

Substitute (1) into (2):  300=T —1200gsin(8°) — (0.09)(1200g cos(8°))
=T =300 +1200g(sin(8°) + 0.09 cos(8°))
=T = 2985 newtons

b. Netforce parallel to slope: 0=T + F —1200gsin(8°)
=T =1200gsin(8°) - F

c. () T=1200gsin(8°)-(0.09)1200g cos(8°) ~589 newtons.

(i) Maximum friction: N =(0.15)1200g cos(8°) ~1746.8 newtons.

Component of weight force of log down the slope: 1200gsin(8°) ~1636.7 newtons.
Therefore the log is not about to slide down the slope.

Therefore T =0.
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