Student Name:

SPECIALIST MATHEMATICS

Units 3 & 4 – Written examination 1

Reading Time: 15 minutes Writing Time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

	201 000011	
Number of	Number of questions	Number of
questions	to be answered	marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, and rulers.
- Students are NOT permitted to bring into the examination room: notes of any kind, a calculator, blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 10 pages.
- Working space is provided throughout the book.

Instructions

- Print your name in the space provided on the top of this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other electronic devices into the examination room.

© TSSM 2009

This page is blank

© TSSM 2009 Page 2 of 10

Instructions

Answer all questions in the spaces provided.

A decimal approximation will not be accepted if an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working must be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the **acceleration due to gravity** to have magnitude g m/s², where g = 9.8.

Question 1

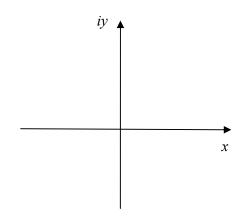
a.	Vectors $\mathbf{u} = \mathbf{a} + k \mathbf{b}$ and $\mathbf{v} = \mathbf{a} - \mathbf{b}$ are perpendicular and $ \mathbf{b} = 2 \mathbf{a} $. Find the v	alue of k for
	which the angle between the vectors \mathbf{a} and \mathbf{b} is 120° .	
-		
		2 1
		3 marks
b. 1	Vectors a, b and c are unit vectors such that $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$. Find the value of $\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}$.	
		2 marks

TURN OVER

© TSSM 2009 Page 3 of 10

Question 2

Let z = x + iy and $w = \frac{1+i}{1-i}$.


a. Show that w = i.

1 mark

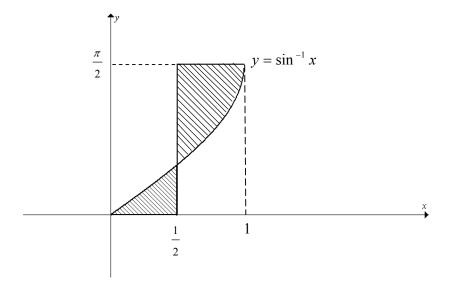
b. Find the Cartesian equation of the subset of the complex plane defined by

 $T = \{ z : z \in |\overline{z} - wz| = 2\sqrt{2} \}$ and sketch its graph.

3 marks

c. Write down all complex numbers $z_1 \in T$ such that $z_1 w \in T$.

2 marks


•	nestion 3
a.	Evaluate $\sin\left(\tan^{-1}\frac{1}{\sqrt{3}}\right) - \cos\left(\tan^{-1}\sqrt{3}\right)$.
	1 mark
b.	If $x = \tan \alpha$, where $\alpha \in \left(0, \frac{\pi}{2}\right)$, find the value of $\sin(\tan^{-1} x) - \cos(\tan^{-1} \frac{1}{x})$.
	2 marks
Qı	testion 4
	and the equations of the normals to the curve $y^2 - 2x^2 + 2xy - 6 = 0$ at the points where the
	we intersects the line $x = 1$.
_	
_	
_	
_	
_	
- - - -	

4 marks
TURN OVER

© TSSM 2009 Page 5 of 10

Question 5

Find the exact area of the shaded region.

·	 		
	 · · · · · · · · · · · · · · · · · · ·	 	

© TSSM 2009 Page 6 of 10

4 marks

Question 6	
Show that $\int_{e^{-3}}^{e^{-2}} \frac{1 + \ln x}{x \ln x (1 - \ln x)} dx = \ln \frac{32}{27}.$	

5 marks

TURN OVER

Question 7

A particle is moving so that its position at time t seconds is given by $\mathbf{r}(t) = 2\cos\frac{\pi}{10}t\,\mathbf{i} + 3t\,\mathbf{j}$. a. Find the Cartesian equation of the path of the particle. State the domain and the range of the path. 2 marks **b.** Find the minimum speed of the particle and the time(s) when it occurs during the first 10 seconds of motion.

2 marks

© TSSM 2009 Page 8 of 10

Question 8

A small object is dropped vertically down from the top of a building which is <i>h</i> metres high. It takes 0.4 seconds to travel the last 8 metres before it hits the ground. If the		
air resistance is negligible, show that the height of the building is:	$h = \frac{\left(100 + g\right)^2}{50g}.$	
	·	
	· · · · · · · · · · · · · · · · · · ·	
	3 marks	

TURN OVER

© TSSM 2009 Page 9 of 10

Question 9

An	object of mass M kg is pushed along a rough horizontal surface by a force F_1 inclined α
deg	grees to the horizontal, where $0 < \alpha < \frac{\pi}{2}$. Another object of the same mass M kg is pulled
alo	ng the same surface by a force F_2 with the same inclination of α degrees to the horizontal. th objects are moving with constant velocity. Show that the force F_1 has a greater magnitude than the force F_2 .
	4 marks
b.	Show that the ratio between the two forces is $\frac{F_1}{F_2} = \frac{1 + \mu \tan \alpha}{1 - \mu \tan \alpha}$, where μ is the coefficient of friction.

END OF QUESTION AND ANSWER BOOK

2 marks

© TSSM 2009 Page 10 of 10