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SPECIALIST MATHEMATICS 
 

Units 3 & 4 – Written examination 1 
 

 
 

2009 Trial Examination 
 

SOLUTIONS 
 
 
Question 1 
 
a. Vectors bau  k+= and bav −= are perpendicular, therefore 0=• vu  

( ) ( )
( )1        0

0
22 =−•+•−

=−•+

bbabaa

baba
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k
        M1 

Also  ( ) o120, =∠ ba ,  so 
2120cos ababa −==• o .       M1 

Substituting 
2aba −=• and ab 2=  into the equation (1), gives 04 2222 =−−+ aaaa kk  

After simplifying we have ( ) 052 2 =− ak  and  
5
2

=k .       A1 

 

b. As 0cba =++  and 1=== cba , vectors cba  and , form an equilateral triangle. 

                                 M1 

The angle between each two vectors is 1200 and 
2
1

−=•=•=• cbcaba .                  

It follows 
2
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2
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−=−−−=⋅+⋅+⋅ accbba .                                                                      A1 
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Question 2 
a.  
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b. Let iyxz += . Then  
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             M1 

      ( ) ( ) 822 =+++ yxyx  

      ( )
2

42

±=+
=+

yx
yx  

      This subset is represented by two parallel lines 2  and  2 −=+=+ yxyx  .        A1               
 

        A1 
 
 

c.   izwz 11 =  which represents a rotation by 
2
π , therefore the required numbers are          M1 

  iiz 2  ,2  ,2  ,21 −−=                                                                                                         A1                        
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Question 3 

a. −






 −

3
1tansin 1 ( )3tan cos 1−

3
cos

6
sin ππ

−=  

 =
2
1

2
1
−                

                                                        = 0                                                                            A1           
                                                                               

b. Given that αtan=x  and 





∈

2
,0 πα  using the right-angle triangle below, we have  

x
1

2
tan =






 −απ   and   

x
1tan

2
1−=






 −απ  

 

               M1 







 −−=






− −− απα

2
 cossin1tan cos)(tan sin 11

x
x  

 = 0  as 





 −= απα

2
 cossin                                                 A1 

 
 
Question 4 
 
To find the points of intersection, substitute x = 1 into 0622 22 =−+− xyxy  which gives  

0822 =−+ yy  4 and 2 −==⇒ yy .                A1 
To find the gradient, differentiate implicitly as follows: 
 

 02242 =++−
dx
dyxyx

dx
dyy  . When rearranged, 

yx
yx

dx
dy

+
−

=
2  .                                        

The gradient of the normal is given by the expression  
xy

yx
dx
dy

2−
+

= .            M1 

At the point (1, 2)  the gradient of the normal is undefined, therefore its equation             M1 
is x = 1.  

At the point (1, -4), the gradient of the normal is 
2
1 and the equation of the normal is  

( )1
2
14 −=+ xy . After simplifying, the equation is 092 =−− yx .               A1 

 
 
 

1

x

α
π
−

2

α

απ
−

2



2009 SPECMATH EXAM 1  

© TSSM 2009                                                                                                                                           Page 4 of 8 

Question 5 
 
 

 
 
The area can be found by integrating yx sin= .      M1 
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Total area = 1
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πAA         A1
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Question 6 
 

Let  ux =ln . Then  dudx
x

=
1 . 

For  3ln   , 33 −=== −− euex  and for 2ln   , 22 −=== −− euex .               M1 
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 Question 7 
 

a. tytx 3   ,
10

cos2 ==
π ,  0≥t  

 

 
2

cos10 1 xt −=
π

, so the Cartesian equation is 
2

cos30 1 xy −=
π

.                                           A1 

 
The domain of this function is [ ]2,2− , the range is [ ]30 ,0 .                  A1 
 
 
b. The speed of a particle can be found as the magnitude of its velocity vector. The position 

vector is ( ) jir  3 
10

2cos ttt +=
π ,  its velocity vector is ( ) jir  3 

10
sin

5
+−= tt ππ

& .  

 

The expression for the speed is ( ) 9
10

sin
25

2
2

+= tt ππr& .                 M1 

The minimum speed is 3 and it occurs when 0
10

sin 2 =tπ
, which is for    ,0

10
ππ

=t   

or 10 ,0=t                                    A1 
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Question 8 
 

At the time t when the object hits the ground:  
2

2
1  ,  , gtagtvga ===  

 

 
 
 

When the object is 8 m above the ground, the time elapsed is )4.0( −t seconds and the      M1 
velocity is )4.0(1 −= tgv . Therefore considering the last 0.4 seconds of travel 

24.0
2
14.0)4.0(8 ×+×−= gtg

 
Solving for t: 
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g

g
g
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5
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5
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5
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=+=⇒+=                 A1

      

Substituting back into 2

2
1 gth =  and simplifying gives ( )

g
gh

50
100 2+

= .    A1 
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Question 9 
a.     Pushing force:                                                                Pulling force: 

                                     
  
 
 
 
 
The velocity of the object is constant, therefore the acceleration is zero. By resolving the 
forces vertically and horizontally we have:      
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everyfor   sincossincos αµααµα +<− 





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2
,0 πα                                                                      A1 

Therefore    
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Dividing each term by αcos  gives 
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