| <b>Student Name:</b> |  |
|----------------------|--|
|                      |  |

# SPECIALIST MATHEMATICS

# Units 3 & 4 – Written examination 2



### 2008 Trial Examination

Reading Time: 15 minutes Writing Time: 2 hours

### **QUESTION AND ANSWER BOOK**

#### **Structure of book**

| Section | Number of | Number of questions to be answered | Number of marks |
|---------|-----------|------------------------------------|-----------------|
|         | questions | to be answerea                     |                 |
| 1       | 22        | 22                                 | 22              |
| 2       | 5         | 5                                  | 58              |
|         |           |                                    | Total 80        |

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, set-squares, aids for curve sketching, one bound reference, an approved graphics calculator or a scientific calculator.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.

#### Materials supplied

• Question book of 22 pages.

#### **Instructions**

- Print your name in the space provided on the top of this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other electronic devices into the examination room.

#### **SECTION 1**

#### **Instructions for Section 1**

Answer all questions.

Choose the response that is **correct** for the question.

A correct answer scores 1, an incorrect answer scores 0.

Marks are **not** deducted for incorrect answers.

If more than 1 answer is completed for any question, no mark will be given.

Take the acceleration due to gravity, to have magnitude  $g m/s^2$ , where g = 9.8

### **Question 1**

The asymptotes of the function  $y = \frac{2x^3 - 7x^2 + 5x}{x^2 - 3x}$  are

**A.** 
$$x = 3$$
,  $x = 0$  and  $y = 2x$ 

**B.** 
$$x = 3$$
,  $x = 0$  and  $y = 2x - 1$ 

**C.** 
$$x = 3, x = 0 \text{ and } y = 2$$

**D.** 
$$x = 3$$
 and  $y = 2x - 1$ 

**E.** 
$$x = 0$$
 and  $y = 2x - 1$ 

### **Question 2**

The equation of a hyperbola with its centre at (-1,2) and an asymptote 5x - 3y + 11 = 0 is

**A.** 
$$\frac{(x-1)^2}{36} - \frac{(y+2)^2}{100} = 1$$

**B.** 
$$\frac{(x-1)^2}{9} - \frac{(y+2)^2}{25} = 1$$

C. 
$$\frac{(x+1)^2}{5} - \frac{(y-2)^2}{3} = 1$$

**D.** 
$$\frac{(x+1)^2}{36} - \frac{(y-2)^2}{100} = 1$$

E. 
$$\frac{(x+1)^2}{25} - \frac{(y-2)^2}{9} = 1$$

#### **Question 3**

The graph of  $y = \frac{-2}{x^2 - (m-1)x - m}$ , m > -1, is positive when

**A.** 
$$x \in (m, \infty)$$

**B.** 
$$x \in (-1, m)$$

**C.** 
$$x \in (-\infty, m)$$

**D.** 
$$x \in (-\infty, -1) \cup (m, \infty)$$

**E.** 
$$x \in (m,1)$$

**SECTION 1-** continued

If z and w are complex numbers such that |w| = |3z| and  $Arg(w) = Arg(z) + \frac{\pi}{2}$  where

 $Arg(w) > 0, Arg(z) < \pi$ , which one of the following must be true

$$\mathbf{A.} \quad w = 3zi$$

**B.** 
$$w = 3\overline{z}$$

C. 
$$\overline{w} = 3z$$

**D.** 
$$Arg(w) + Arg(z) = \pi$$

**E.** 
$$wi = 3z$$

### **Question 5**

If 
$$z = 2cis\left(-\frac{2\pi}{3}\right)$$
 then  $z^{-2}$  is

**A.** 
$$-4cis\left(-\frac{2\pi}{3}\right)$$

**B.** 
$$-4cis\left(\frac{4\pi}{3}\right)$$

C. 
$$\frac{1}{4} cis\left(\frac{2\pi}{3}\right)$$

**D.** 
$$\frac{1}{4} cis\left(-\frac{2\pi}{3}\right)$$

$$\mathbf{E.} \quad \frac{1}{4} cis \left( \frac{4\pi^2}{9} \right)$$

#### **Question 6**

For any  $n \ge 3$ , the complex roots of the equation  $z^n = 1$  are vertices of a polygon with perimeter

**B.** 
$$n\sin\frac{2\pi}{n}$$

C. 
$$2n\sin\frac{2\pi}{n}$$

**D.** 
$$n\sin\frac{\pi}{n}$$

$$\mathbf{E.} \quad 2n\sin\frac{\pi}{n}$$

SECTION 1- continued TURN OVER

For the curve with equation  $y = x^2 e^{-x}$ , the values of x for which  $\frac{dy}{dx} > 0$  and  $\frac{d^2y}{dx^2} < 0$  are

**A.** 
$$(0, 2-\sqrt{2})$$

**B.** 
$$(2-\sqrt{2}, 2+\sqrt{2})$$

C. 
$$(2-\sqrt{2}, 2)$$

**D.** 
$$(2, 2+\sqrt{2})$$

**E.** 
$$(2+\sqrt{2}, 2)$$

# **Question 8**

The graph of  $f(x) = a \sin^{-1}\left(x - \frac{1}{2}\right) + b$  passes through the points  $\left(0, -\frac{\pi}{12}\right)$  and  $\left(1, \frac{7\pi}{12}\right)$ . The values of a and b are

**A.** 
$$a = 2, b = \frac{\pi}{4}$$

**B.** 
$$a = \frac{-2}{3}, b = \frac{25\pi}{436}$$

C. 
$$a = -2, b = \frac{\pi}{4}$$

**D.** 
$$a = 2, b = -\frac{\pi}{4}$$

**E.** 
$$a = \frac{-2}{3}, b = \frac{\pi}{4}$$

#### **Question 9**

If the scalar resolute of  $\mathbf{a} = 2\mathbf{i} + x\mathbf{j} - \mathbf{k}$  in the direction of  $\mathbf{b} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$  is 2, then x is equal to

- **A.** 0
- **B.**  $\sqrt{3}$
- **C.** 3
- **D.**  $3\sqrt{3}$
- **E.** 9

If  $\mathbf{m} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$ ,  $\mathbf{n} = \mathbf{i} - 2\mathbf{j} - \mathbf{k}$  and  $\theta$  is the angle between the direction of  $\mathbf{m}$  and  $\mathbf{n}$ , the exact value of  $\cos 2\theta$  is

- **A.**  $-\frac{1}{6}$
- **B.**  $\frac{1}{6}$
- **C.**  $\frac{17}{18}$
- **D.**  $-\frac{17}{18}$
- **E.** 3

### **Question 11**

A solution of  $\int x(2x-3)^3 dx$  is

- **A.**  $\frac{u^5}{5} + \frac{u^4}{4}$
- **B.**  $\frac{(2x-3)^5}{20} + \frac{3(2x-3)^4}{16}$
- C.  $\frac{u^5}{20} + \frac{u^4}{16}$
- **D.**  $\frac{(2x-3)^5}{10} + \frac{(2x-3)^4}{8}$
- E. none of these

#### **Question 12**

A tank initially contains 100 litres of solution in which 4 kg of salt is dissolved. A solution containing 5 kg of salt per litre is added at the rate of 8 litres per minute. The mixture is drained simultaneously at a rate of 10 litres per minute. There are x kg of salt in the tank after t minutes. This can be described by a differential equation

**A.** 
$$\frac{dx}{dt} = 40 - \frac{10x}{100 + 2t}$$

**B.** 
$$\frac{dx}{dt} = 100 - \frac{5x}{50 - t}$$

C. 
$$\frac{dx}{dt} = 40 - \frac{5x}{50 - t}$$

**D.** 
$$\frac{dx}{dt} = 20 - \frac{5x}{50 - t}$$

**E.** 
$$\frac{dx}{dt} = 40 + \frac{5x}{50 + t}$$

SECTION 1- continued TURN OVER

A spherical balloon is inflated at a rate  $\frac{\pi}{3}$  cm<sup>3</sup> per minute. The rate at which its surface area is increasing when the radius is 5cm is

- **B.**  $\frac{2\pi}{15}$
- C.  $\frac{15}{2\pi}$ D.  $\frac{3}{\pi}$ E.  $\frac{9}{\pi^2}$

### **Question 14**

An approximation to the solution of the differential equation  $\frac{dy}{dx} = y - x^2$  with y(4) = 1 is

found using Euler's method with h = 0.04. When x = 4.12, the value for y is closest to

- A. -0.9122
- **B.** -0.2386
- C. -0.8435
- **D.** -1.6277
- **E.** 0.9984

#### **Question 15**

A solution of  $\int \sin 2x \sec^2 2x \ dx$  can be written as  $a \sec 2x$ . The value of a is

- **A.**  $\frac{1}{2}$
- **B.** 2
- C.  $-\frac{1}{2}$
- **D.** -2
- E. none of these

$$\int_{0}^{2} \frac{x^{2}}{4+x^{2}} dx =$$

**A.** 
$$2 - \ln 2$$

**B.** 
$$\ln 2 - \frac{1}{2}$$

C. 
$$2 \tan^2 2 + 4 \ln(\cos 2)$$

**D.** 
$$2 \ln(\sec 2) - \sin 2$$

**E.** 
$$2 - \frac{\pi}{2}$$

### **Question 17**

The velocity,  $v ms^{-1}$ , travelling in a straight road is given by  $v = 4 - x^2$  where x is the position of the body at time t seconds. The acceleration of the body is equal to

$$\mathbf{A.} - 2x$$

**B.** 
$$(4-x^2)t$$

$$\mathbf{C}. -2xt$$

**D.** 
$$-2x^3$$

**E.** 
$$-8x + 2x^3$$



The family of solutions of a first order differential equation is shown above. The differential equation could be

$$\mathbf{A.} \ \frac{dy}{dx} = y - x$$

$$\mathbf{B.} \quad \frac{dy}{dx} = -x^2 + y$$

C. 
$$\frac{dy}{dx} = -\frac{x}{y}$$

$$\mathbf{D.} \ \frac{dy}{dx} = x + y$$

$$\mathbf{E.} \quad \frac{dy}{dx} = -x$$

### **Question 19**

A car of mass 1 tonne, travelling at  $\frac{50}{3}m/s$  on a level road, has its speed reduced to  $\frac{20}{3}m/s$ 

in 5 seconds when the brakes are applied. The total retarding force (assumed constant) is

- **A.** 7200N
- **B.** 200N
- **C.** 2000N
- **D.** 720N
- E. 1000N

**SECTION 1-** continued

#### **Ouestion 20**

Masses of 3kg and 5kg are hanging at the ends of a light string that passes over a smooth fixed peg as shown in the diagram.



The tension in the string is

**A.** 2*g* 

**B.**  $\frac{15g}{4}$ 

C. 8g

**D.**  $\frac{g}{4}$ 

**E.** *g* 

### **Question 21**

A ball is thrown vertically upwards with an initial speed of 29.4 ms<sup>-1</sup> from the top of a building 20 m high. Neglecting air resistance, the ball is above the top of the building for

**A.** 6 seconds

**B.** 5 seconds

C. 4 seconds

**D.** 3 seconds

**E.** 2 seconds

### **Question 22**

A particle of mass 5kg hangs at the end of a string attached to a fixed point. The particle is held at rest by a horizontal force of magnitude 26N so that the string makes an angle  $\theta^{\circ}$  with the vertical as shown in the diagram.



The angle  $\theta$  is closest to

**A.** 89°

**B.** 62°

**C.** 28°

**D.** 11°

**E.** 45°

END OF SECTION 1 TURN OVER

### **SECTION 2**

# **Instructions for Section 2** Answer all questions. A decimal approximation will not be accepted if the question specifically asks for an exact answer is required. For questions worth more than one mark, appropriate working **must** be shown. Unless otherwise indicated, the diagrams are **not** drawn to scale. Take the **acceleration due to gravity**, to have magnitude $g \text{ m/s}^2$ , where g = 9.8

# **Question 1**

|   | ion of the equation $p(z) = 0$ such that $w + \overline{w} = 4$ and $w\overline{w} = 8$ . |
|---|-------------------------------------------------------------------------------------------|
| U | sing this information, write down a quadratic factor of $p(z)$ .                          |
| _ |                                                                                           |
|   |                                                                                           |
|   |                                                                                           |
|   |                                                                                           |
|   |                                                                                           |
|   | 1:                                                                                        |
|   |                                                                                           |
| Т | The other quadratic factor of $p(z)$ is $z^2 - 5z - 6$ . Find the value of a.             |
| 1 | The other quadratic factor of $p(z)$ is $z = 3z = 0$ . I find the value of $a$ .          |
|   |                                                                                           |
|   |                                                                                           |
|   |                                                                                           |
|   |                                                                                           |
|   |                                                                                           |
|   |                                                                                           |
|   |                                                                                           |
|   |                                                                                           |
| _ |                                                                                           |
|   |                                                                                           |
| _ | 2 n                                                                                       |

**SECTION 2- Question 1-** continued

| Show that $w = 2 + 2i$ .      |                  |
|-------------------------------|------------------|
|                               |                  |
|                               |                  |
|                               |                  |
|                               |                  |
|                               | 2 marks          |
| <b>1.</b> Find, in polar form |                  |
| <b>i.</b> <i>w</i> .          |                  |
|                               |                  |
|                               |                  |
| ii. $\overline{w}^5$ .        |                  |
| <b>11.</b> " .                |                  |
|                               |                  |
|                               |                  |
|                               |                  |
| iii. <sup>3</sup> √w          |                  |
| · · · · · ·                   |                  |
|                               |                  |
|                               |                  |
|                               |                  |
|                               |                  |
|                               | 1+1+2 = 4  marks |

**SECTION 2- Question 1-**continued

**TURN OVER** 

**e.** Let *S* and *T* be subsets of the complex plane where  $S = \{z : |z - w| \le |w|\}$ 

and  $T = \{z : 0 < Argz \le Argw\}$ . Sketch S and T and shade  $S \cap T$ .



3 marks Total 12 marks

**SECTION 2-** continued

b.

| Qu | estion 2                                                                                                       |
|----|----------------------------------------------------------------------------------------------------------------|
| a. | Use integration by substitution to find the indefinite integral $\int x^{n-1}e^{-x^n}dx$ , where <i>n</i> is a |
|    | positive integer.                                                                                              |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    | <del></del>                                                                                                    |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    | 3 marks                                                                                                        |
|    | 2                                                                                                              |
| Ev | aluate the definite integral $\int_{0}^{2} xe^{-x^{2}} dx$ giving your answer in exact form.                   |
|    | 0                                                                                                              |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |

2 marks
SECTION 2- Question 2- continued
TURN OVER

- **c.** The graph of  $y = e^{-x^2}$  is shown below.
  - i. Shade the region bounded by the curve  $y = e^{-x^2}$  and the lines x = a, x = -a and y = 0.



**ii.** Write down an expression which gives the volume of the solid obtained by revolving the shaded region about the *y*-axes. Do **not** evaluate the volume at this stage.

|      | <br> |  |
|------|------|--|
|      |      |  |
|      | <br> |  |
| <br> | <br> |  |
|      |      |  |

1 + 2 = 3 marks

**SECTION 2- Question 2-**continued

| l. G | ven that $\int \log_e y dy = y \log_e y - y + c$ , find the volume of this solid of revolution. |
|------|-------------------------------------------------------------------------------------------------|
|      |                                                                                                 |
|      |                                                                                                 |
|      |                                                                                                 |
|      |                                                                                                 |
|      |                                                                                                 |
|      |                                                                                                 |
|      |                                                                                                 |
|      |                                                                                                 |
|      |                                                                                                 |
|      | 3 marks                                                                                         |
| W    | nat is the limiting value of the volume when $a \to \infty$ ?                                   |
|      |                                                                                                 |
|      |                                                                                                 |
|      |                                                                                                 |
|      |                                                                                                 |
|      |                                                                                                 |
|      | 1 mark<br>Total 12 marks                                                                        |

SECTION 2- continued TURN OVER

The nautilus is a marine creature that lives around coral reefs (*Figure 1*).



Figure 1



Figure 2

The mathematical model of a nautilus shell is an equiangular spiral (*Figure 2*). The equations of equiangular spirals are of the form  $r = Ae^{k\theta}$ , where k is a constant. At every point P, the tangent to the spiral makes the same angle,  $\alpha$ , with the line OP. The size of the angle  $\alpha$  depends on the constant k.

The line OP makes an angle  $\theta$  with the positive part of the x-axis.

**a.** Show that the Cartesian coordinates of the point P(x, y) are  $x = Ae^{k\theta}\cos\theta$ ,  $y = Ae^{k\theta}\sin\theta$ .

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |

2 marks

**SECTION 2- Question 3-** continued

|                                                            | 4 marks                                                   |
|------------------------------------------------------------|-----------------------------------------------------------|
|                                                            | 7 marks                                                   |
| t to the spiral can be written as $tan(\alpha + \theta)$ . |                                                           |
|                                                            |                                                           |
|                                                            |                                                           |
|                                                            |                                                           |
|                                                            |                                                           |
|                                                            |                                                           |
|                                                            | 1 mark                                                    |
|                                                            | to the spiral can be written as $\tan(\alpha + \theta)$ . |

SECTION 2- Question 3- continued TURN OVER

| <br> |      |
|------|------|
|      |      |
|      |      |
| <br> |      |
|      |      |
|      |      |
| <br> |      |
|      |      |
|      |      |
| <br> |      |
|      |      |
| <br> |      |
|      |      |
|      | 3 ma |

**SECTION 2-** continued

#### **Ouestion 4**

A ship has the position vector  $\mathbf{r}_s = 0\mathbf{i} + 0\mathbf{j}$ . A missile is spotted at the position  $\mathbf{r}_m = 1000\mathbf{i} + 500\mathbf{j}$  moving towards a ship with velocity  $\mathbf{v}_m = -30\mathbf{i} + 3\mathbf{j}$ . Assume that gravity is the only force acting on the missile.

| 1. | Show that the position vector of the missile at time $t$ is given by $\mathbf{r}_m(t) = (-30t + 1000)\mathbf{i} + (-4.9t^2 + 3t + 500)\mathbf{j}$ |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                   |
|    |                                                                                                                                                   |
|    |                                                                                                                                                   |
|    |                                                                                                                                                   |
|    |                                                                                                                                                   |
|    |                                                                                                                                                   |
|    | 3 mars                                                                                                                                            |

An anti-missile can be fired from the ship with a velocity of  $100ms^{-1}$  at an angle  $\theta^{\circ}$  to the horizontal. Assume that gravity is the only force acting on the anti-missile

| ). | Show that the position vector of the anti-missile at time $t$ is given by $\mathbf{r}_a(t) = 100t \cos\theta \mathbf{i} + \left(-4.9t^2 + 100t \sin\theta\right)\mathbf{j}$ |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                             |
|    |                                                                                                                                                                             |
|    |                                                                                                                                                                             |
|    |                                                                                                                                                                             |
|    |                                                                                                                                                                             |
|    |                                                                                                                                                                             |
|    |                                                                                                                                                                             |
|    |                                                                                                                                                                             |
|    |                                                                                                                                                                             |

3 marks

**SECTION 2- Question 4** –continued

**TURN OVER** 

| sile.                                                        |
|--------------------------------------------------------------|
|                                                              |
|                                                              |
|                                                              |
|                                                              |
|                                                              |
|                                                              |
|                                                              |
|                                                              |
|                                                              |
|                                                              |
|                                                              |
|                                                              |
|                                                              |
|                                                              |
|                                                              |
| 5 marks                                                      |
| w many seconds after firing will the missile be intercepted? |
|                                                              |
|                                                              |
|                                                              |
|                                                              |
| 1 mark<br>Total 12 marks                                     |
|                                                              |

**SECTION 2-** continued

The diagram shows particles A and B each lying on smooth planes of inclination 30° to the horizontal. A and B are attached to inextensible strings passing over smooth pulleys and are connected to a third particle C hanging freely. The strings make angles of  $\alpha$  and  $\beta$  with the vertical as shown. The particles A, B and C have masses respectively 2M, 1.5M and 3M. The system rests in equilibrium.



**a.** On the diagram above, show all forces acting on these three particles.

2 marks

| b. | Express the tensions in the strings in terms of $M$ . |  |
|----|-------------------------------------------------------|--|
|    |                                                       |  |
|    |                                                       |  |
|    |                                                       |  |
|    |                                                       |  |
|    |                                                       |  |
|    |                                                       |  |
|    |                                                       |  |
|    |                                                       |  |
|    |                                                       |  |

SECTION 2- Question 5 –continued TURN OVER

| $2\cos\alpha + 3\cos\beta = 3$                                                 |             |
|--------------------------------------------------------------------------------|-------------|
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                | 4 mai       |
|                                                                                |             |
|                                                                                |             |
| Hence, find the values of $\alpha$ and $\beta$ accurate to the nearest degree. |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                |             |
|                                                                                | 4 ma        |
|                                                                                | Total 12 ma |

# END OF QUESTION AND ANSWER BOOK