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  Instructions to students 

This exam consists of 9 questions. 

All questions should be answered. 

There is a total of 40 marks available. 

The marks allocated to each of the nine questions are indicated throughout. 

Where more than one mark is allocated to a question, appropriate working must be shown. 

Unless otherwise indicated, diagrams in this exam are not drawn to scale. 

Students may not bring any notes or calculators into the exam. 

The acceleration due to gravity should be taken to have magnitude 
2m/sg where 8.9=g  

Formula sheets can be found on pages 12-14 of this exam. 
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Question 1 

 

A particle of mass 2 kg moves in a straight line. 

 

The velocity s/mv , of the particle at time 0,seconds ≥tt  is given by 

 

( )
2

3sin
t

tv −= . 

 

a. Find the acceleration of the particle expressed as a function of t. 

 

 

 

 

1 mark 

 

 

b. Find the maximum resultant force acting on the particle during its motion. 

 

 

 

 

 

 

 

 

 

 

 

 

2 marks 
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Question 2 

 

Consider the relation given by 

 

( )
1

94

1
22

=+
− yx

. 

 

a. Sketch the graph of the relation on the set of axes below.  The y-intercepts are not 

required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 marks 

 

 

b. Find an expression for 
dx

dy
 in terms of x and y. 

 

 

 

 

 

 

 

 

 

 

 

 

3 marks 
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c. Hence show that if ( )1,1for  0then ,0 −∈>> x
dx

dy
y . 

 

 

 

 

 

 

 

 

2 marks 
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Question 3 

 

a. Show that ( )( )
x

x
x

e

e
e

dx

d
4

2
2

1

2
arctan

+
= . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 mark 

 

 

b. Hence find the exact value of ∫ +

5log

0

4

2

1

e

dx
e

e
x

x

. 

 

 

 

 

 

 

 

 

 

 

 

 

3 marks 
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Question 4 

 

a. Given that iz 3=  is a solution to the equation 

 

,0652 234 =+−+− azzzz  

 

show that 6=a . 

 

 

 

 

 

 

 

 

1 mark 

 

 

b. Hence find all the solutions to the equation  

 

Czzzzz ∈=+−+− for  06652 234 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 marks 
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Question 5 

 

a. Find 
( )
( )∫ 








dx

x

x
2

2tan

2sec
. 

 

 

 

 

 

 

 

 

 

 

1 mark 

 

 

b. Evaluate ∫ −

1

0 2
dx

x

x
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 marks 
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Question 6 

 

Let . where  and 2
~~~~~~~~

Rakjaivkjiu ∈−+=++=  

The angle between 
3

 is  and 
~~

π
vu . 

Find the value of a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 marks 

 

 

Question 7 

 

Solve the differential equation  

 

4

7
2

2

+

+
=
x

x

dx

dy
 

given that ( ) 00 =y . 

 

 

 

 

 

 

 

 

 

 

 

 

3 marks 
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Question 8 

 

The region enclosed by the graph of ( )xy sin22 −=  and the positive x and y-axes is shaded 

in the diagram below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This shaded region is rotated about the x-axis to form a solid of revolution. 

Find the volume of this solid of revolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 marks 

 

 

)sin(22 xy −=

2

π
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Question 9 

 

a. i. Find the coordinates of the stationary point of the graph of the function  

 

32

1
2 −−

=
xx

y . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii. Find the nature of this stationary point. 

 

 

 

 

 

 

 

 

 

 

marks 312 =+  
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b. Express 
32

1
2 −− xx

 in partial fraction form. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 marks 

 

 

c. Hence find the area enclosed by the curve with equation 
32

1
2 −−

=
xx

y , the x-axis 

and the lines 2 and 0 == xx . 

 

 

 

 

 

 

 

 

 

 

 

 

2 marks 
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Specialist Mathematics Formulas 
Mensuration 

area of a trapezium:   hba )(
2

1
+  

curved  surface area of a cylinder: rhπ2  

volume of a cylinder:   hr 2π  

volume of a cone:   hr 2

3

1
π  

volume of a pyramid:   Ah
3

1
 

volume of a sphere:   
3

3

4
rπ  

area of a triangle:   Abcsin
2

1
 

sine rule:    
C

c

B

b

A

a

sinsinsin
==  

cosine rule:    Cabbac cos2222 −+=  

 

Coordinate geometry 

ellipse:  1
)()(

2

2

2

2

=
−

+
−

b

ky

a

hx
 hyperbola: 1

)()(
2

2

2

2

=
−

−
−

b

ky

a

hx
 

Circular (trigonometric) functions 

1)(sin)(cos 22 =+ xx  

)(sec)(tan1 22 xx =+     )(cosec1)(cot 22 xx =+  

)sin()cos()cos()sin()sin( yxyxyx +=+  )sin()cos()cos()sin()sin( yxyxyx −=−  

)sin()sin()cos()cos()cos( yxyxyx −=+  )sin()sin()cos()cos()cos( yxyxyx +=−  

)tan()tan(1

)tan()tan(
)tan(

yx

yx
yx

−
+

=+    
)tan()tan(1

)tan()tan(
)tan(

yx

yx
yx

+
−

=−  

)(sin211)(cos2)(sin)(cos)2cos( 2222 xxxxx −=−=−=  

)cos()sin(2)2sin( xxx =    
)(tan1

)tan(2
)2tan(

2 x

x
x

−
=  

function 1sin −                               1cos −                                1tan −  

domain 

 

range 

]1,1[−                             ]1,1[−                                 R  







−

2
,

2

ππ
                       ],0[ π                            








−

2
,

2

ππ
 

Algebra (Complex numbers) 

θθθ cis)sin(cos riryixz =+=+=  

ryxz =+= 22     ππ ≤<− zArg  

)(cis 212121 θθ += rrzz     )cis( 21

2

1

2

1 θθ −=
r

r

z

z
 

)cis( θnrz nn =            (de Moivre’s theorem) 
 

Reproduced with permission of the Victorian Curriculum and Assessment Authority, Victoria, 

Australia. 

This formula sheet has been copied in 2006 from the VCAA website www.vcaa.vic.edu.au 

The VCAA publish an exam issue supplement to the VCAA bulletin. 
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Calculus 

 

( ) 1−= nn nxx
dx

d
     ∫ −≠+

+
= + 1,

1

1 1 ncx
n

dxx nn
 

( ) axax aee
dx

d
=      ce

a
dxe axax +=∫

1
 

( )
x

x
dx

d
e

1
)(log =     cxdx

x
e +=∫ log

1
 

( ) )cos()sin( axaax
dx

d
=     cax

a
dxax +−=∫ )cos(

1
)sin(  

( ) )sin()cos( axaax
dx

d
−=    cax

a
dxax +=∫ )sin(

1
)(cos  

( ) )(sec)tan( 2 axaax
dx

d
=    ∫ += cax

a
dxax )tan(

1
)(sec2  

( )
2

1

1

1
)(sin

x
x

dx

d

−
=−     0,sin

1 1

22
>+








=

−

−∫ ac
a

x
dx

xa
 

( )
2

1

1

1
)(cos

x
x

dx

d

−

−
=−    0,cos

1 1

22
>+








=

−

− −∫ ac
a

x
dx

xa
 

( )
2

1

1

1
)(tan

x
x

dx

d

+
=−     c

a

x
dx

xa

a
+







=

+
−∫ 1

22
tan  

 

 

product rule:   
dx

du
v

dx

dv
uuv

dx

d
+=)(  

quotient rule:   
2
v

dx

dv
u

dx

du
v

v

u

dx

d
−

=







 

chain rule:   
dx

du

du

dy

dx

dy
=  

Euler’s method:   , and ),( If 00 byaxxf
dx

dy
===  

)( and  then 11 nnnnn xhfyyhxx +=+= ++  

acceleration:   






==== 2

2

2

2

1
v

dx

d

dx

dv
v

dt

dv

dt

xd
a  

constant (uniform) acceleration:  atuv +=     
2

2

1
atuts +=     asuv 222 +=     tvus )(

2

1
+=  

 

 
Reproduced with permission of the Victorian Curriculum and Assessment Authority, Victoria, 

Australia. 

This formula sheet has been copied in 2006 from the VCAA website www.vcaa.vic.edu.au 

The VCAA publish an exam issue supplement to the VCAA bulletin. 
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Vectors in two and three dimensions 

 

 

~~~~
kzjyixr ++=  

rzyxr =++= 222

~
  21212121

~
2

~
1 cos. zzyyxxrrrr ++== θ  

~~~

~

~
k

dt

dz
j

dt

dy
i

dt

dx

dt

rd
r ++==ɺ  

 

 

 

Mechanics 

 

 

momentum:   
~~
vmp =  

equation of motion:  
~~
amR =  

friction:    NF µ≤  
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