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Specialist Mathematics Formulas

Mensuration

area of a trapezium:
1
2 a + b( )h

curved surface area of a cylinder: 2πrh

volume of a cylinder: πr2h

volume of a cone:
1
3 πr2h

volume of a pyramid:
1
3 Ah

volume of a sphere:
4
3 πr3

area of a triangle:
1
2 bc sin A

sine rule:
a

sin A = b
sin B = c

sin C

cosine rule: c2 = a2 + b2 – 2ab cos C

Coordinate geometry

ellipse:
x − h( )2

a2 +
y − k( )2

b2 = 1

hyperbola:
x − h( )2

a2 −
y − k( )2

b2 = 1

Circular (trigometric) functions

cos2x + sin2x = 1

1 + tan2x = sec2x cot2x + 1 = cosec2x

sin(x + y) = sin x cos y + cos x sin y sin(x – y) = sin x cos y – cos x sin y

cos(x + y) = cos x cos y – sin x sin y cos(x – y) = cos x cos y + sin x sin y

tan(x + y) = 
tan x + tan y

1 − tan x tan y tan(x – y) = 
tan x − tan y

1 + tan x tan y

cos 2x = cos2x – sin2x = 2 cos2x – 1 = 1 – 2 sin2x

sin 2x = 2 sin x cos x tan 2x = 
2tan x

1 − tan2x

function Sin–1 Cos–1 Tan–1

domain

range

[–1, 1]

− π
2 ,

π
2

 
  

 
  

[–1,1]

[0, π]

R

− π
2 ,

π
2

 
  

 
  

Algebra (Complex numbers)

z = x + yi = r(cos θ + i sin θ) = r cis θ

z = x2 + y2 = r –π < Arg z ≤ π

z1z2 = r1r2 cis(θ1 + θ2)
z1
z2

= r1
r2

cis θ1 − θ2( )

zn = rn cis nθ   (de Moivre’s theorem)



TURN OVER

Calculus

d
dx xn( ) = nxn−1 ∫ xndx = 1

n + 1 xn+1 + c, n ≠ −1

d
dx eax( ) = aeax ∫ eaxdx = 1

a eax + c

d
dx (loge x) = 1

x ∫ 1
x dx = logex + c, for x > 0

d
dx sin ax( ) = a cos ax ∫ sin ax dx = − 1

a cosax + c

d
dx cos ax( ) = −asin ax ∫ cos ax dx = 1

a sin ax + c

d
dx tan ax( ) = asec2 ax ∫ sec2 ax dx = 1

a tan ax + c

d
dx Sin−1x( ) = 1

1 − x2
∫ 1

a2 − x2
dx = Sin−1 x

a + c, a > 0

d
dx Cos−1x( ) = −1

1 − x2
∫ −1

a2 − x2
dx = Cos−1 x

a + c, a > 0

d
dx Tan−1x( ) = 1

1 + x2 ∫ a
a2 + x2 dx = Tan−1 x

a + c

product rule:
d

dx uv( ) = u
dv
dx + v

du
dx

quotient rule:
d

dx
u
v

 
  

 
  =

v
du
dx − u

dv
dx

v2

chain rule:
dy
dx = dy

du
du
dx

mid-point rule: f x( )dx ≈ b − a( ) f
a + b

2
 
  

 
  

a

b

∫

trapezoidal rule: f x( )dx ≈ 1
2 b − a( ) f a( ) + f b( )( )

a

b

∫

Euler’s method: If 
dy
dx = f x( ),  x0 = a and y0 = b, then xn + 1 = xn + h and yn + 1 = yn + h f (xn)

acceleration: a = d 2x
dt 2 = dv

dt = v
dv
dx = d

dx
1
2 v2 

  
 
  

constant (uniform) acceleration: v = u  + at s = ut +
1
2 at2 v2 = u2 + 2as s = 

1
2  (u + v)t



Vectors in two and three dimensions

r
~

= x i
~

+ y j
~

+ zk
~

| r
~

| = x2 + y2 + z2 = r r
~ 1. r

~ 2 = r1r2 cos θ = x1x2 + y1y2 + z1z2

˙ r 
~

=
dr

~
dt = dx

dt i
~

+ dy
dt j

~
+ dz

dt k
~

Mechanics

momentum: p
~

= mv
~

equation of motion: R
~

= m a
~

friction: F ≤ µN

END OF FORMULA SHEET
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Mathematical Association of Victoria
2001

SPECIALIST MATHEMATICS
Written examination 2 (Analysis Task)

Question 1

The displacement of a particle is specified by the equation

    
r t t i t j
~ ~ ~
( ) cos sin= +8 2 6 2   where      t t:0 2≤ ≤ π

a. i. Show that at t = 0 the displacement and velocity of the particle are perpendicular.

2 marks

ii. Find the remaining times where the displacement and velocity of the particle
are perpendicular.

3 marks

b. i. Find the cartesian equation of the path of the particle.

2 marks
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ii. Sketch the graph of the path on the axes below.

2 marks

c. Find the maximum and minimum magnitude of the acceleration of the particle.

3 marks

Total marks: 12

y

x

0 2 4 6 8–2–4–6–8

4

2

0

–2

–4
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Question 2

Let     w i= +2 2

a. Plot, and clearly label, w and   w  on the Argand diagram below.

1 mark

b. Define the set T which is the disc whose boundary includes the circle that passes
through the points w and   w , where the line joining w and   w  is a diameter
of the disc.

1 mark

c. Show that     v i= +3 3  is an element of T.

1 mark

d. Express v in polar form.

2 marks

Im z

Re z

5

0

–5

0 2 4 6–2–4–6
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e. Sketch, on the Argand diagram provided above,     U T z z v= ∩ <{ }: Arg .

2 marks

Total marks: 7

Question 3

This diagram shows two particles  A and  B attached by a light inextensible string which passes
over a smooth pulley.  The mass of A is 4 kg and B has mass 8 kg.  The coefficient of friction for
both planes is 0.1.

a. Draw all the forces acting on the particles A and B on the diagram above. 2 marks

b. Find the angle θ such that the two particles would be just on the point of
moving.  Give your answer to the nearest degree.

4 marks

Total marks: 6

θ

Α

Β
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Question 4

The graph of the function

    f R:[ , ]0 4 →  where  
    
f x

x

x( ) =
+

−12

4 32

is shown below.

a. i. Find     ′′f x( ).

3 marks

ii. For what exact value of x is the magnitude of the gradient of the graph a maximum?

1 mark

f(x)

x

6

4

2

0

0 1 2 3 4 5

–2
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b. Find an anti-derivative of 
    

x

x2 4+

2 marks

A space capsule is composed of two parts, an inner compartment and a re-entry shield.

The inner compartment takes the shape of a volume of revolution of the graph of f about
the x-axis.  All measurements are in metres.

c. Use calculus to find the volume of the inner compartment to the nearest cubic metre.

4 marks

The external wall of the re-entry shield is the shape of the parabola

    g R g x x:[ , ] ( )0 5 3 5→ = −  where    rotated about the x-axis.

The thickness of the re-entry shield is the cross-sectional distance between its external
wall and the wall of the inner compartment measured parallel to the y-axis for
    { : }x x0 4≤ ≤

d. i. Write down an expression as a function of x which gives the thickness of the re-entry
shield.

1 mark

ii. Evaluate the maximum thickness of the re-entry shield correct to
3 decimal places.

1 mark

Total marks: 12
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Question 5

a. i. Find 
    
d
dx xelog (cos )[ ]

2 mark

ii. Hence find an antiderivative of tan x

1 mark

b. Find     tan3 x dx∫

4 marks

c. Sketch     f x x x( ) tan ,= ≤ ≤3 0  for  π

2 marks

y

x
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d. Find the exact value of the area enclosed by the curve     f x x( ) tan= 3 , the y-axis and the
straight line y = 1.

4 marks

Total marks: 13

Question 6

A tree fully laden with apricots has 20 apricots infected with a fungal infection called brown rot.
After a thunderstorm, the fungal infection spreads rapidly through the remaining apricots.  The
rate of spread of the fungus is dependent on the number of infected apricots and the number of
apricots yet to be infected.  This infestation can be modelled by the equation:

    
dA
dt kA A= −( )2000 , where A is the total number of infected apricots, t days after the

thunderstorm.

a. i. Express 
    

1
2000A A( )−  in partial fraction form.

3 marks
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ii. Show that the solution to 
    
dA
dt kA A= −( )2000  can be written as:

    
A e

e

kt

kt=
+

2000
99

2000

2000

6 marks

b. Find the exact value of k, given that 80 apricots are infected after 2 days.

2 marks
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c. i. Sketch the graph of A against t, for     t ≤ 15.

2 marks

ii. Explain the relationship between the k-value and the rate of infection.

1 mark

d. After how many days will 1000 of the apricots be infected?

2 marks

Total 16 marks

1500

1000

500

4 6 8 10 12 14
t

A

0
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