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Specialist Mathematics Formulas

Mensuration

area of a trapezium:
1
2 a + b( )h

curved surface area of a cylinder: 2πrh

volume of a cylinder: πr2h

volume of a cone:
1
3 πr2h

volume of a pyramid:
1
3 Ah

volume of a sphere:
4
3 πr3

area of a triangle:
1
2 bc sin A

sine rule:
a

sin A = b
sin B = c

sin C

cosine rule: c2 = a2 + b2 – 2ab cos C

Coordinate geometry

ellipse:
x − h( )2

a2 +
y − k( )2

b2 = 1

hyperbola:
x − h( )2

a2 −
y − k( )2

b2 = 1

Circular (trigometric) functions

cos2x + sin2x = 1

1 + tan2x = sec2x cot2x + 1 = cosec2x

sin(x + y) = sin x cos y + cos x sin y sin(x – y) = sin x cos y – cos x sin y

cos(x + y) = cos x cos y – sin x sin y cos(x – y) = cos x cos y + sin x sin y

tan(x + y) = 
tan x + tan y

1 − tan x tan y tan(x – y) = 
tan x − tan y

1 + tan x tan y

cos 2x = cos2x – sin2x = 2 cos2x – 1 = 1 – 2 sin2x

sin 2x = 2 sin x cos x tan 2x = 
2tan x

1 − tan2x

function Sin–1 Cos–1 Tan–1

domain

range

[–1, 1]

− π
2 ,

π
2

 
  

 
  

[–1,1]

[0, π]

R

− π
2 ,

π
2

 
  

 
  

Algebra (Complex numbers)

z = x + yi = r(cos θ + i sin θ) = r cis θ

z = x2 + y2 = r –π < Arg z ≤ π

z1z2 = r1r2 cis(θ1 + θ2)
z1
z2

= r1
r2

cis θ1 − θ2( )

zn = rn cis nθ   (de Moivre’s theorem)



TURN OVER

Calculus

d
dx xn( ) = nxn−1 ∫ xndx = 1

n + 1 xn+1 + c, n ≠ −1

d
dx eax( ) = aeax ∫ eaxdx = 1

a eax + c

d
dx (loge x) = 1

x ∫ 1
x dx = logex + c, for x > 0

d
dx sin ax( ) = a cos ax ∫ sin ax dx = − 1

a cosax + c

d
dx cos ax( ) = −asin ax ∫ cos ax dx = 1

a sin ax + c

d
dx tan ax( ) = asec2 ax ∫ sec2 ax dx = 1

a tan ax + c

d
dx Sin−1x( ) = 1

1 − x2
∫ 1

a2 − x2
dx = Sin−1 x

a + c, a > 0

d
dx Cos−1x( ) = −1

1 − x2
∫ −1

a2 − x2
dx = Cos−1 x

a + c, a > 0

d
dx Tan−1x( ) = 1

1 + x2 ∫ a
a2 + x2 dx = Tan−1 x

a + c

product rule:
d

dx uv( ) = u
dv
dx + v

du
dx

quotient rule:
d

dx
u
v

 
  

 
  =

v
du
dx − u

dv
dx

v2

chain rule:
dy
dx = dy

du
du
dx

mid-point rule: f x( )dx ≈ b − a( ) f
a + b

2
 
  

 
  

a

b

∫

trapezoidal rule: f x( )dx ≈ 1
2 b − a( ) f a( ) + f b( )( )

a

b

∫

Euler’s method: If 
dy
dx = f x( ),  x0 = a and y0 = b, then xn + 1 = xn + h and yn + 1 = yn + h f (xn)

acceleration: a = d 2x
dt 2 = dv

dt = v
dv
dx = d

dx
1
2 v2 

  
 
  

constant (uniform) acceleration: v = u  + at s = ut +
1
2 at2 v2 = u2 + 2as s = 

1
2  (u + v)t



Vectors in two and three dimensions

r
~

= x i
~

+ y j
~

+ zk
~

| r
~

| = x2 + y2 + z2 = r r
~ 1. r

~ 2 = r1r2 cos θ = x1x2 + y1y2 + z1z2

˙ r 
~

=
dr

~
dt = dx

dt i
~

+ dy
dt j

~
+ dz

dt k
~

Mechanics

momentum: p
~

= mv
~

equation of motion: R
~

= m a
~

friction: F ≤ µN

END OF FORMULA SHEET



Multiple-Choice Answer Sheet

Student’s Name

Circle the letter that corresponds to each answer.

1. A B C D E
2. A B C D E
3. A B C D E
4. A B C D E
5. A B C D E
6. A B C D E
7. A B C D E
8. A B C D E
9. A B C D E

10. A B C D E
11. A B C D E
12. A B C D E
13. A B C D E
14. A B C D E
15. A B C D E
16. A B C D E
17. A B C D E
18. A B C D E
19. A B C D E
20. A B C D E
21. A B C D E
22. A B C D E
23. A B C D E
24. A B C D E
25. A B C D E
26. A B C D E
27. A B C D E
28. A B C D E
29. A B C D E

30. A B C D E

© The Mathematical Association of Victoria 2001 Page 1



Mathematical Association of Victoria
2001

SPECIALIST MATHEMATICS
Written examination 1 (Facts, skills and applications)

Part I
MULTIPLE CHOICE QUESTION BOOK

Question 1

If 
    
OA i j k= − −2 3

~ ~ ~
 and 

    
OB i j= +3 2

~ ~
, then   AB  is equal to

A.
    
i j k
~ ~ ~
+ +3 3

B.
    
− + −i j k

~ ~ ~
3

C. 3

D.
    
i j k
~ ~ ~

+ + 3

E.
    
i j k
~ ~ ~

+ −3 3

Question 2

The set of points in the complex plane defined by     z z− = +1 3  is

A. the circle with centre (1, 0) and radius 3
B. the circle with centre (1 , –3) and radius 1
C. the point     z = −1

D. the line     Re( )z = −1

E. the line     Re( )z = 1

© The Mathematical Association of Victoria 2001 Page 2
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Question 3

The implied domain of the function with rule 
    
f x x

( ) ( )= + +−2
2

11Sin  is

A.
  
− −[ ]6 2,

B.
  

−





π π
2 2

,

C.
  
−[ ]4 0,

D.
  
−[ ]1 0,

E.
  

0
1

2
,







Question 4

If 
    
cos x = − 2

5
 and 

    
π π
2

< <x , then     sin x =

A.   
  

21

5

B.
  

− 21

5

C.     
  

1

5

D.   
  

1

5

E.
  

− 1

5
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Question 5

Which of the following is a polar form of     − −3 i ?

A.
    
2

6
cis π





B.
    
2

5

6
cis π





C.
    
2

5

6
cis −





π

D.
    
2

3
cis π





E.
    
2

2

3
cis −





π

Question 6

An antiderivative of 
    

2
1 9 2+ x

 is

A.     2 31Tan− ( )x

B.
    
2
9 31Tan− ( )x

C.
    
2
3 31Tan− ( )x

D.
    
2
3 3

1Tan− 





x

E.
    
2 3

1Tan− 





x
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Question 7

With a suitable substitution 
    

sin( ) cos( )3 3

3

2 x e dxx
π

π

∫  can be expressed as

A.
    

1
3

3

2  e duu
π

π

∫

B.
    
− ∫1

3
3

2  e duu
π

π

C.
    
− ∫1

3 0
1  e duu

D.
    
− −∫

1
3 1

0  e duu

E.
    
1
3 1

0  e duu
−∫

Question 8

A particle of mass 2 kg is acted on by a resultant force of (
    
6 2i j

~ ~
− ) newtons.  The magnitude of the

particle’s acceleration in ms–2 is

A.   10

B.  4

C.   2 2

D.   4 5

E.   2 10

Question 9

If     ′ = −h x x x( ) 2 1 2  and     h( )0 1= , then     h x( ) =

A.
    
2
3 1 2

3
2( )− x

B.
    
2
3 1 1

3
2

3
2( )− −x

C.
    
2
3 1 5

3
2

3
2( )− +x

D.
    
5
3

2
3 1 2

3
2− −( )x

E.
    
1
3

2
3 1 2

3
2− −( )x
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Question 10

The position vector of a particle at time t is given by  
    
r t e i t jt
~ ~ ~
( ) sin( )= +−2 5

2 33 .  The speed of the

particle at time t = 0 is

A.
  
3 41

2

B.
  

241
2

C.  2

D.
  
13
2

E.
  
3
2

Question 11

If     f x x x( ) = + −2 152 , then the graph of 
    

1
f x( )  has

A. x-intercepts at     x = −3 and 
    
x = 5

2

B. asymptotes at     x = −3 and     
x = 5

2

C. asymptotes at     x = −3 and 
    
x = 2

5

D. a local minimum at the point 
  

− −





1

4

1

4
,

E. a local maximum at the point 
  

− −





1

4
15

1

4
,

Question 12

By a suitable substitution     sin ( )3 2x dx∫  can be expressed as:

A.     − −∫2 1 2( )u du 

B.     2 1 2( )−∫ u du 

C.
    
− −∫1

2 1 2( )u du

D.
    
− −∫1

2 1 2( )u du

E.
    
1
2 1 2( )−∫ u du
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Question 13

An approximation to 
    

2
2

2
−

−
∫ x dx  using the trapezoidal rule with two equal intervals is

A. 9.6569
B. 5.4641
C. 5.3334
D. 4.8284
E. 3.4142

Question 14

An antiderivative of 
    

3
2 32

x
x +  is

A.
    
1
4 2 32log ( )e x +

B.
    
3
4 2 32log ( )e x +

C.     3 2 32log ( )e x +

D.
    

3
2

3
2

1Tan− 





x

E.
    
4
3 2 32log ( )e x +

Question 15

A vat initially holds 40 L of water.  A salt solution of concentration 3 g L–1 is poured into the vat at
a rate of 5 L min–1.  The mixture is kept uniform by stirring and flows out of the container at a rate
of 2 L min–1.  If Q grams is the amount of salt in the vat t minutes after the start of pouring, then a
differential equation for Q is

A.
    
dQ
dt

Q= −15 40

B.
    
dQ
dt

Q
t= − +15 2

40

C.
    
dQ
dt

Q
t= − +15 2

40 3

D.
    
dQ
dt

Q
t= − 3

E.
    
dQ
dt

Q= − 3
40
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Question 16

The region bounded by the curve   y x=  and the straight line 
    
y x= 1

2
 as shown in the diagram

below is rotated about the y-axis to form a solid of revolution.  The volume of this solid in cubic
units is given by

A.
    π ( )4 2 4

0
2 y y dy−∫

B.
    π ( )4 2 4

0
4 y y dy−∫

C.
    π ( )y y dy4 2

0
2 4−∫

D.
    π ( )y y dy4 2

0
4 4−∫

E.
    π ( )y y dy4 2

0
2 2−∫

Question 17

If     y xe= log (sin ), then

A.
    

2
2 0

2

2sin x
dy
dx

d y
dx

− =

B.
    

1
2 0

2

2sin x
dy
dx

d y
dx

+ =

C.
    

2
2 0

2

2sin x
dy
dx

d y
dx

+ =

D.
    

dy
dx

d y
dx

+ =2 0
2

2

E.
    

1 2

2sin cosx
dy
dx

d y
dx

x+ =

y

2

1

0
0 1 2 3 4

(4.2)

x
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Question 18

If 
    
w cis= 



2 3

4
π  and 

    
z cis= 



3 3

π , then wz is equal to

A.
    
5 4

2
cis π





B.
    
6 4

2
cis π





C.
    
6 11

12cis −





π

D.
    
5 11

12cis −





π

E.
    
5 13

12cis π





Question 19

The position of a particle at time t is given by 
    
r t t i t j t
~ ~ ~

( ) cos( ) sin( )= + ≥3 2 4 2 0,   

The Cartesian equation of the path of the particle is

A.     x y2 2 7+ = ,      − ≤ ≤7 7x

B.     x y2 2 25+ = ,      − ≤ ≤5 5x

C.     3 4 1x y+ = ,      x ≥ 0

D.     16 9 1442 2x y+ = ,      0 3≤ ≤x

E.     16 9 1442 2x y+ = ,      − ≤ ≤3 3x

Question 20

Euler’s method, with a step size of 0.1 is used to solve the differential equation 
    
dy
dx x= −3 12  with

    y = 3 at     x = 1.  The value obtained for y at     x = 1 2. , correct to three decimal places, is

A. 3.200
B. 3.263
C. 3.463
D. 3.528
E. 3.532
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Question 21

A projectile is launched with a speed of   4 3  ms–1 at an angle of 30° to the horizontal.  If 
    
i
~

 is

horizontally to the right and 
    
j

~
 vertically upwards in the plane of motion of the projectile, then the

initial velocity of the projectile in ms–1 is

A.
    
8 3 8i j

~ ~
+

B.
    
8 3 2i j

~ ~
+

C.
    
4 3 4 3i j

~ ~
+

D.
    
6 2 3i j

~ ~
+

E.
    
2 3 6i j

~ ~
+

Question 22

If 
    
a i j
~ ~ ~

= −5 3  and 
    
b i j
~ ~ ~

= + , the vector resolute of 
    
a
~

 perpendicular to 
    
b
~

 is

A.
    
i j
~ ~

+

B.
    
6 2i j

~ ~
−

C.
    

1
17 7 23( )

~ ~
i j+

D.
    
4 4i j

~ ~
−

E.
    
− +4 4i j

~ ~

Question 23

The acceleration of a body at time t seconds is given by 
    
dv
dt v= 4  cm s–2, where v is the velocity of

the body at time t.  If the initial velocity of the body is –2 cm s–1, the velocity of the body at time t is

A.     2 2 1t +

B.     − +2 2 1t

C.
    
4

2
loge

t−





D.     2 4t +

E.     8 2( )t +
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Question 24

The angle between the vectors 
    
a i j k
~ ~ ~ ~

= + +2 2  and 
    
b i j
~ ~ ~

= +4 3  is closest to

A. 0.75°
B. 42.83°
C. 71.68°
D. 86.69°
E. 87.20°

Question 25

If 
    
y x= −Cos 1 3

2  and 
    
x > 3

2 , then 
  
dy
dx =

A.
    

3

4 92x x −

B.
    

−
−

3

4 92x x

C.
    

−
−

2

9 4 2x

D.
    

2

9 4 2− x

E.
    

−
−

3

1 4 2x

Question 26

A man of mass 75 kg is standing in a lift, which is moving with an upwards acceleration of 2.5 ms–2.
The magnitude of the force in newtons exerted by the floor of the lift on the man, is

A.     75 2 5( . )g +

B.     75 2 5( . )g −
C. 75g
D. 187.5
E. 187.5g
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Question 27

The diagram shows all the forces acting on a block of mass 5 kg, which is being pulled up a rough
inclined plane at constant speed.  The plane is inclined at 25° to the horizontal and the coefficient
of friction between the block and the plane is 0.2.  The block is being pulled by a rope which makes
an angle of 40° with the plane.  T newtons is the tension in the rope, N newtons is the normal
reaction of the plane on the block and F newtons is the frictional force.

Resolving forces parallel to the plane gives

A.     T g Ncos cos40 5 25° = ° −

B.     T gcos sin40 5 25° = °

C.     T g gcos sin40 5 25 2° = ° +

D. T N gcos . cos40 0 2 5 25° = + °

E.     T N gcos . sin40 0 2 5 25° = + °

Question 28

To prove that the diagonals of the rhombus ABCD are perpendicular, it is sufficient to show:

A.
    
( ) ( )
~ ~ ~ ~
a b a b+ ⋅ − = 0

B.
    
( ) ( )
~ ~ ~ ~
a b a b+ − − = 0

C.     AB DC AD BC
→ → → →

= =  and  

D.
  
AB BC
→ →

=

E.
    
a b
~ ~

⋅ = 0

N T

F

5 g
25°

40°

a
~

b
~

B C

DA
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Question 29

A light inelastic string is attached to two points A and B, which are in a horizontal line.  A particle
of mass 4 kg is attached to the string at point C by means of a smooth ring and hangs in equilibrium.
AC and BC each make an angle of θ with the horizontal.  The tension in the string, measured in
newtons is

A.
  

2
sinθ

B.
    

2g
cos θ

C.
    

g
cos θ

D.
    

2g
sinθ

E.
    

g
2sinθ

Question 30

Two masses are connected by a light inelastic string that passes over a smooth pulley as shown.
The acceleration due to gravity has magnitude g ms–2.  If a ms–2 is the magnitude of the acceleration
of each mass, then a equals

A. 5g

B.
    
5
2
g

C. g

D.
    
g
2

E.
    
g
5

A B

C

4 kg

2 kg

3 kg
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SPECIALIST MATHEMATICS
PART II

Question 1
a. AB is the diameter of a circle whose centre is O.  C is another distinct point on that circle.

Given that 
    
OA a=

~
 and 

    
OC c=

~
.  Express   AC  and   BC in  terms of 

    
a
~

 and 
    
c
~

2 marks

b. Hence, show that the angle ACB is a right angle.

3 marks

Total marks: 5

Question 2

Two sets of traffic lights, on a straight road are separated by a distance of 1.6 kilometres. A car
accelerates from rest from the first set of lights with an acceleration of 0.25 m/s2 until it reaches a
speed of 20 m/s.  It maintains this speed until it decelerates to rest at the second set of lights, at
0.5 m/s2.

a. Draw a velocity-time graph to represent this journey.

2 marks

v

t



MAV SPECIALIST MATHEMATICS EXAMINATION 1, 2001

© The Mathematical Association of Victoria 2001 Page 15

b. Hence, find the time taken to complete the journey.

2 marks
Total marks: 4

Question 3

Two solutions of a polynomial equation P(z) = 0 are z = 2 and z =     3i .

a. Find, in expanded form, a polynomial of the lowest degree with these solutions.

1 mark

b. Find, in expanded form, a polynomial of the lowest degree with real coefficients that
have these solutions.

2 marks
Total marks: 3
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Question 4

Use calculus to evaluate 

    

x x dx1 2
1

2

3
2

+
−
∫

4 marks

Question 5

Use trigonometric identities to find the exact values of 
  
sin

π
8

 and 
  
cos

15

8

π .

4 marks
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