SET 3 EXAM 1

Reading time: 15 minutes

Writing time: 60 minutes

Structure of examination

Number of questions	Number of questions to be answered	Number of marks
10	10	40

Note: Formula Sheet is NOT supplied. You will need to use your own!

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape or a calculator of any type.

Materials supplied

- · Question and answer book.
- Working space is provided throughout the book.

Instructions

- Complete all responses in the spaces provided.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

~			
l n	stru	cti	กทร
	.,,,,,		

Answer all questions in the spaces provided.

In all questions where a numerical answer is required an exact value must be given unless otherwise specified. In questions where more than one mark is available, appropriate working must be shown.

Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question:	I
-----------	---

		2 r
Let $f(x) = \sin(2x)\cos(2x)$. Find f'	$\left(\frac{\pi}{8}\right)$.	

2 marks

40

(diff)

शहरा

:21

. Fi	nd an antiderivative of $\sin(4-2x)$ with respect to x .	
	with respect to x .	
		1 ma
Ev	aluate $\int_0^a \frac{1}{x+a} dx$ for $a > 0$.	
	$J_0 x + a$	
		
•		
 -		
stion	9	2 marks
	te following functions	
	$f: D \to \mathbb{R}, \ f(x) = \log_e(\log_e(x))$ and	
	$g:(b,\infty) o\mathbb{R},\;g(x)=rac{1}{4}x^2$	

a. Find D given that it is the maximal domain of f(x).

2 marks

	
	2 marks
nction for a continuous random variable X is given by	
$p(x) = \begin{cases} 1 - \cos\left(\frac{2\pi x}{k}\right) & \text{if } 0 \le x \le k \\ 0 & \text{otherwise} \end{cases}$	
	3 marks
	anction for a continuous random variable X is given by $p(x) = \begin{cases} 1 - \cos\left(\frac{2\pi x}{k}\right) & \text{if } 0 \le x \le k \\ 0 & \text{otherwise} \end{cases}$

g M

象征

泰維

žŒ.

签官

製造

EE

SEE.

鐵筐

#E

起軍

88

. Se

122

燃

Question 5	
Solve the equation $\sin^2(x) = \cos^2(x)$ for $x \in [0, 2\pi]$.	
	.,,,,,
	2 mar
times plays a game of darts in which he must score as many consecutive bull's-eyes as possible. In all's-eye, he is allowed another throw, and if he misses, the game ends. He wins \$10 for each bull's-eye the probability of James hitting a bull's-eye is 0.1, find the probability that James will win more that ays one game.	he hits.
	3 mark

Question 7

A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by

$$T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}a & 0\\0 & b\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix} + \begin{bmatrix}c\\d\end{bmatrix}$$

The transformation T maps the points (1,1) and (2,2) to the points (-2,2) and (3,1), respectively.

<u> </u>	***************************************	***************************************				
					. 	
			· ····			
	11 11 a a 111Ma					
-						
						3
Hence, or other	wise, find the equa	ation of the ima	age of the line	y = x under t	his transformatio	n.

1 mark

Δ	_4:_	o
Que	Stic	m

Two independent events A and B are such that $\Pr(A \cap B) = \frac{1}{4}$ and $\Pr(A \cap B') = \frac{5}{8}$.

a. Find Pr(A) and Pr(B).

3 marks

b. Show that A and B' are independent events.

		- 11 11 11 11 11 11 11 11 11 11 11 11 11	

2 marks

Question 9

Consider the following diagram.

The rules for the two functions are

$$f(x) = x(x-2)(x-4) = x^3 - 6x^2 + 8x$$
 and $g(x) = -ax$

The graph of g is tangent to the graph of f at the point P as shown. Both a and p are positive real numbers.

a. Show that a = 1 and p = 3.

•			
•			
-	*******		
•			
-	 · · · · · · · · · · · · · · · · · · ·		

3 marks

		··· ··	 	
***************************************			 ,	
		,	 	
				3

 $2~{
m marks}$

						1
Y is ${f t}$	ne point on the line jo	ining A and M	that is closest to	O. Find the leng	gth of OY if $x =$	$\frac{\sqrt{30}}{2}$ m.
		TO THE PROPERTY OF THE PARTY OF				

END OF EXAMINATION