CALCULUS TECH-FREE TEST 1

Writing time: 30 minutes

Structure of test

Number of questions	Number of questions to be answered	Number of marks
5	5	20

 1 11 11 11 11 11 11 11 11 11 11 11 11 1		
 ······································		

estion 2	
Find the derivative of $x \log_e(x^2)$.	
	2 marl
Hence, find the antiderivative of $\log_e(x^2)$.	
	" - " - "
	3 marks
tion 3	
urface area of a sphere increases from 64π to 65π . Find the corresponding approximate increase in r	adius.
	-
	1 marks
	Find the derivative of $x\log_e(x^2)$. Hence, find the antiderivative of $\log_e(x^2)$. tion 3 arface area of a sphere increases from 64π to 65π . Find the corresponding approximate increase in r

建設

12

讂

No.

選

#

72

For the following hybrid function, f(x), find the largest subset of $[0, 6\pi]$ for which f(x) is strictly decreasing.

$$f(x) = \begin{cases} \tan\left(-\frac{x}{3}\right), & 0 \le x \le 2\pi\\ -\pi x + 2\pi^2 + \sqrt{3}, & x > 2\pi \end{cases}$$

3 marks

Question 5

A cylinder sits exactly in a sphere of radius 6 cm as shown in the cross-sectional diagram below.

The height of the cylinder is h and its radius is r.

				•	
a.	Show	that	r	=	$\frac{\sqrt{144 - h^2}}{2}$

				· · · · · · · · · · · · · · · · · · ·
				1
			o of the entiredor	
Use your result fr	rom part b. to find th	ie maximum volum	te of the cylinder.	

END OF TEST

CALCULUS TECH-FREE TEST 2

Writing time: 30 minutes

Structure of test

Number of questions	Number of questions to be answered	Number of marks
4	4	20

stion 1	
Evaluate $\int_{-t}^{t} (e^{-x} + x) dx$.	
J_0 '	
·	
	2 marks
7771	
What does your answer from part a. represent?	
	Evaluate $\int_0^t (e^{-x} + x) dx$. What does your answer from part a. represent?

	testion 2 asider the line $y = 2x - 3$ and point A , $(-4, 2)$.	
a.	State the gradient of the normal to this line.	
		1 marks
ь.	Hence, define a normal to $y = 2x - 3$ that passes through a general point, (x_a, y_a) , on that line.	
	·	
		2 marks
c.	Hence, or otherwise, find the shortest distance between this line and point A .	
	·	
		5 marks
Que	stion 3	
Usin	g linear approximation, find an approximate value for $\frac{1}{\sqrt[3]{28}}$.	
	₹28	
	·	

b.

Farmer Bebbington owns a field which is bounded by four roads. Road A is described by the function, $f(x) = 2\log_e(x+2) + 1$, Roads B and C are the coordinate axes and Road D is given by x=6.

a.i) Shade in Farmer Bebbington's field in the diagram above.

ii)	${\bf Find}$	the	inverse	of	f(x),	$f^{-1}(x)$,	and	sketch	it	on	the	above	axes.
-----	--------------	-----	---------	----	-------	---------------	-----	--------	----	----	-----	-------	-------

·	

3 marks

ᇔ

Uanaa an at	homiaa find t	he suce of Four	- ou Dakkin mtor	.)_ £_1J	
nence, or ot	inerwise, nna t	he area of Farn	ner Bebbingtoi	n's neid.	
	•				

3 marks

END OF TEST

CALCULUS TECH-ACTIVE TEST 1

Writing time: 60 minutes

Structure of test

Section	$Number\ of\ questions$	Number of questions to be answered	Number of marks
1	11	11	11
2	2	2	29
			40

SECTION 1 - Multiple-choice questions

Question 1

Let f be a function defined by $f:[0,3]\to\mathbb{R},\ f(x)=x^2-2x-1$. The maximum and minimum values respectively

A.
$$-1, -3$$

B.
$$2, -2$$

E.
$$1, -2$$

Question 2

The function f has a derivative function $f'(x) = \frac{1}{2}e^{3x} - \sin(\frac{1}{2}x)$ and passes through the point (0,2). f(x) is

A.
$$f(x) = \frac{1}{6}e^{3x} + \cos(\frac{1}{2}x) + \frac{5}{6}$$

B.
$$f(x) = \frac{1}{2}e^{3x} + 2\cos(\frac{1}{2}x) - \frac{1}{2}$$

B.
$$f(x) = \frac{1}{2}e^{3x} + 2\cos(\frac{1}{2}x) - \frac{1}{2}$$
C.
$$f(x) = \frac{1}{6}e^{3x} + 2\cos(\frac{1}{2}x) - \frac{1}{6}$$
D.
$$f(x) = \frac{1}{2}e^{3x} - \cos(\frac{1}{2}x) + \frac{5}{2}$$
E.
$$f(x) = \frac{1}{6}e^{3x} + \cos(x) + \frac{5}{6}$$

D.
$$f(x) = \frac{1}{2}e^{3x} - \cos(\frac{1}{2}x) + \frac{5}{2}$$

E.
$$f(x) = \frac{1}{6}e^{3x} + \cos(x) + \frac{5}{6}$$

What is the average value of the function $f(x) = |x^2 - 4|$ over the interval [-3, 3]?

A.
$$\frac{32}{3}$$

A.
$$\frac{32}{3}$$
B. $\frac{23}{9}$
C. $\frac{8}{3}$

C.
$$\frac{8}{3}$$

$$\mathbf{D}$$
. -6

If a function is given by the following graph, then the derivative could be

A.

в.

经

24

C.

D.

E.

If the graph below is of the function f(x) = x(x-2)(x+1) and the area of the region B is three times that of region A, the value of a correct to 4 decimal places is

- A. 1.0818
- В. 1.2384
- C. 1.9802
- D. -1.4993
- $\mathbf{E}.$ 0.8799

Question 6

If f is a function that is defined for \mathbb{R} and differentiable for \mathbb{R} , and the following properties hold,

- f'(x) > 0 for x < -1
- f'(x) = 0 for x = -1
- $f'(x) > 0 \text{ for } -1 < x < \frac{5}{2}$ $f'(x) = 0 \text{ for } x = \frac{5}{2}$ $f'(x) < 0 \text{ for } x > \frac{5}{2}$

Then f has what kinds of stationary points at x = -1 and $x = \frac{5}{2}$ respectively?

- A stationary point of inflection at x = -1 and a local minimum at $x = \frac{5}{2}$ A.
- A local minimum at x = -1 and a stationary point of inflection $x = \frac{5}{2}$ В.
- A local minimum at x = -1 and a local maximum at $x = \frac{5}{2}$ C.
- D. A stationary point of inflection at x = -1 and a local maximum at $x = \frac{5}{2}$
- A local maximum at x = -1 and a local minimum at $x = \frac{5}{2}$ E.

The derivative of $y = e^{f(x)} \cos(f(x))$ is

- A. $e^{f(x)}f'(x)\cos(f(x))$
- $\mathbf{B.} \qquad e^{f(x)}f'(x)\left(\cos\left(f(x)\right)+\sin\left(f(x)\right)\right)$
- C. $e^{f(x)}f'(x)(\cos(f(x)) \sin(f(x)))$
- $\mathbf{D.} \qquad e^{f(x)}f'(x)\sin\left(f(x)\right)$
- E. $e^{f(x)}f(x)(\cos(f(x)) + \sin(f(x)))$

Question 8

The area between the curve $y = e^x$ the y-axis and the line $y = e^2$ is

- **A.** 0
- \mathbf{B} . e^2
- C. $e^2 1$
- D. $2e^2$
- E. $e^2 + 1$

Question 9

A line that is perpendicular to the tangent of the curve of $y = x^2 - 4x + 4$ at the point (3,1) is

- A. y = 2x 1
- **B.** x = 1
- C. y = 3 x
- **D.** $y = -\frac{1}{2}$
- E. $y = -\frac{1}{2}x + 2$

Question 10

The acute angle between the tangents to the curves $f(x) = x^3 - x^2 - 2x + 3$ and $g(x) = (x-2)^2 + 3$ at the intersection of the two curves correct to 2 decimal places is

繸

- **A.** 9.46°
- B. 45.00°
- C. 9.46°
- **D.** 32.42°
- E. 80.54°

Question 11

The function $f(x) = ax^3 + 2ax^2 + 2x - 1$ has two turning points for

- **A.** $a \in \mathbb{R} \setminus \left[0, \frac{3}{2}\right]$
- $\mathbf{B.} \quad a \in \left(0, \frac{3}{2}\right)$
- C. $a \in \mathbb{R}$
- $\mathbf{D.} \quad a \in \mathbb{R} \setminus \left(0, \frac{3}{2}\right)$
- $\mathbf{E.} \quad a \in \left[0, \frac{3}{2}\right]$

SECTION 2 - Extended response questions

Question 1

An ice-cream cone is modeled by an inverted cone with radius 4 cm and height 15 cm. The empty cone is filled with ice-cream. Let r represent the radius of the surface of that top of the ice-cream in the cone and h represent the height of the ice-cream in the cone.

a. Find r in terms of h.
b. Find an expression for the Volume, V cm³ in terms of h.

If the volume of ice-cream in the cone is increasing at $20\mathrm{cm}^3/\mathrm{s}$, find the rate at which the height of th					
If the volume of ice-cream in the cone is increasing at $20\mathrm{cm}^3/\mathrm{s}$, find the rate at which the height of th			Albanina		
If the volume of ice-cream in the cone is increasing at $20\mathrm{cm}^3/\mathrm{s}$, find the rate at which the height of th					
If the volume of ice-cream in the cone is increasing at $20\mathrm{cm}^3/\mathrm{s}$, find the rate at which the height of th					
If the volume of ice-cream in the cone is increasing at $20\mathrm{cm}^3/\mathrm{s}$, find the rate at which the height of th					
If the volume of ice-cream in the cone is increasing at $20\mathrm{cm}^3/\mathrm{s}$, find the rate at which the height of th					
If the volume of ice-cream in the cone is increasing at $20\mathrm{cm}^3/\mathrm{s}$, find the rate at which the height of th					
If the volume of ice-cream in the cone is increasing at $20\mathrm{cm}^3/\mathrm{s}$, find the rate at which the height of th		ANNI TOMO			
If the volume of ice-cream in the cone is increasing at $20\mathrm{cm}^3/\mathrm{s}$, find the rate at which the height of th					
If the volume of ice-cream in the cone is increasing at $20\mathrm{cm}^3/\mathrm{s}$, find the rate at which the height of th	MITTER TO THE PROPERTY OF THE	MT-MT-T-MT			
If the volume of ice-cream in the cone is increasing at $20\mathrm{cm}^3/\mathrm{s}$, find the rate at which the height of th					
If the volume of ice-cream in the cone is increasing at $20\mathrm{cm}^3/\mathrm{s}$, find the rate at which the height of th					
If the volume of ice-cream in the cone is increasing at $20\mathrm{cm}^3/\mathrm{s}$, find the rate at which the height of th					0
					J 11
			o cm /s, mid the rate	at without the neight of	orre
\cdot					

(陸

趣

旞

推

鑑

纞

: 99

É

淮

e e

1

- ST

á

······································			 	-	
		 	 		17000000
<u></u>		 	 		
	Works II	 	 		
			•		

•	peak is at (4	, 300), find	the values	of a and b .	ime that the			

			****			neve .		
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•	, <u>, , , , , , , , , , , , , , , , , , </u>	
			·					
					1178-14-1			3 mark
i. Find the :	x and y inte	rcepts of th	e function.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				3 mark
i. Find the	$x \ \mathrm{and} \ y \ \mathrm{inter}$	rcepts of th	e function.					3 mark
i. Find the	x and y inte	rcepts of th	e function.					3 mark
i. Find the	x and y inte	rcepts of th	e function.					3 mark
i. Find the	x and y inte	rcepts of th	e function.					3 mark
i. Find the	x and y inte	rcepts of th	e function.					3 mark
i. Find the	x and y inte	rcepts of th	e function.					3 mark
i. Find the	x and y inter	rcepts of th	e function.					3 mark
i. Find the	x and y inter	rcepts of th	e function.					3 mark

E

繼

186

Hi E

ii.	Find	the	furning	noints	٥f	the	function.
11.	ring	orre	omming	pomes	ΟŢ	one	runcmon.

iii. Sketch the mountain range labeling the turning points and axis intercepts.

	The state of the s	
·		

ч	articular day the water fills up to a height of 100 m. If the mountain range is 1000 m long (assuming
	onstant cross-sectional area), find the volume of water in m ³ that is in the temporary dam correct to
n	earest 1000 m ³ .
	3 n
	the height of the water remains at 100 m, and Nina slides down the slope from the minor peak into t
w	the height of the water remains at 100 m, and Nina slides down the slope from the minor peak into t
w	the height of the water remains at 100 m, and Nina slides down the slope from the minor peak into t ater in the dam, what is the acute angle that she will hit the water at, in degrees correct to the neare
w	the height of the water remains at 100 m, and Nina slides down the slope from the minor peak into t ater in the dam, what is the acute angle that she will hit the water at, in degrees correct to the neare
w	the height of the water remains at 100 m, and Nina slides down the slope from the minor peak into t ater in the dam, what is the acute angle that she will hit the water at, in degrees correct to the neare
w	the height of the water remains at 100 m, and Nina slides down the slope from the minor peak into t ater in the dam, what is the acute angle that she will hit the water at, in degrees correct to the neare
w	the height of the water remains at 100 m, and Nina slides down the slope from the minor peak into t ater in the dam, what is the acute angle that she will hit the water at, in degrees correct to the neare
w	the height of the water remains at 100 m, and Nina slides down the slope from the minor peak into t ater in the dam, what is the acute angle that she will hit the water at, in degrees correct to the neare
w	the height of the water remains at 100 m, and Nina slides down the slope from the minor peak into t ater in the dam, what is the acute angle that she will hit the water at, in degrees correct to the neare
w	the height of the water remains at 100 m, and Nina slides down the slope from the minor peak into t ater in the dam, what is the acute angle that she will hit the water at, in degrees correct to the neare
w	the height of the water remains at 100 m, and Nina slides down the slope from the minor peak into tater in the dam, what is the acute angle that she will hit the water at, in degrees correct to the nearest egree?

444

推路

鄉

2%

1846

- regula

運治

1838

1862

選擇

i de la composição de l

400

Base

1

Find the minimum volume of water in m^3 needed to overfill the temporary 1000 m^3 .	dam correct to the nearest

3 marks

END OF TEST

CALCULUS

TECH-ACTIVE TEST 2

Writing time: 60 minutes

Structure of test

Section	Number of questions	Number of questions to be answered	Number of marks
1	11	11	11
2	3	3	29
			40

SECTION 1 - Multiple-choice questions

Question 1

The derivative of $y = \log_e (f(3x+1)) x^2$ is

A.
$$6x \log_e (f(3x+1)) + 3x^2 \frac{f'(3x+1)}{f(3x+1)}$$

B. $2x \log_e (f(3x+1)) + 3x^2 \frac{f'(3x+1)}{f(3x+1)}$
C. $2x \log_e (3x+1) + \frac{x^2}{f(3x+1)}$

B.
$$2x \log_e (f(3x+1)) + 3x^2 \frac{f'(3x+1)}{f(3x+1)}$$

C.
$$2x \log_e (3x+1) + \frac{x^2}{f(3x+1)}$$

D.
$$2x \log_e (f(3x+1)) + x^2 \frac{f'(3x+1)}{f(3x+1)}$$

E. $6x \log_e (f(3x+1)) + \frac{f'(3x+1)}{f(3x+1)}$

E.
$$6x \log_e (f(3x+1)) + \frac{f'(3x+1)}{f(3x+1)}$$

Question 2

The tangent of $f(x) = -2\log_e(x-2)$ at x=4 is parallel to the tangent $g(x) = -(x-a)^2$ at x=4. The value of a

B.
$$\frac{7}{2}$$

D.
$$\frac{5}{2}$$

$$\mathbf{E}$$
. -2

The area under the curve $y = 2\log_e(x+1)$ from x = 1 to x = 4 can be approximated by the following rectangles:

The area of this approximation is

- $\log_e(2) + \log_2(3) + \log_e(4)$
- в. $\log_e(576)$
- $2(5\log_e(5) 2\log_e(2) 3)$ C.
- $5\log_e{(5)} 2\log_e{(2)} 3$ D.
- $\log_e(29)$ $\mathbf{E}.$

Question 4

The area bound by the curve $f(x) = \frac{6}{4x+1} - \frac{1}{2}$, the x-axis and the y-axis may be found by evaluating

A.
$$\left[\frac{3}{2}\log_e(|4x+1|) - \frac{1}{2}x\right]_0^{\frac{11}{4}}$$

B.
$$\left[\frac{3}{2}\log_e(|4x+1|) - \frac{1}{2}x\right]_0^{\frac{11}{2}}$$

C. $\left[3\log_e(|x+1|) - \frac{1}{2}x\right]_0^{\frac{11}{4}}$
D. $\left[3\log_e(x+1) - \frac{1}{2}x\right]_0^{2}$

C.
$$\left[3\log_e(|x+1|) - \frac{1}{2}x\right]_0^{\frac{11}{4}}$$

D.
$$\left[3\log_e(x+1) - \frac{1}{2}x\right]_0^2$$

E.
$$\left[\frac{3}{2}\log_e\left(-4x-1\right)-\frac{1}{2}x\right]_0^{\frac{11}{4}}$$

The cubic $f(x) = ax^3 + 2ax^2 - bx + 2$ has 1 stationary point for

$$\mathbf{A.} \quad a = 0$$

B.
$$a = 0$$
 and $a = -\frac{3b}{4}$

C.
$$a = \frac{1}{2}b \text{ and } a = -\frac{3b}{4}$$

$$\mathbf{D.} \qquad a = \frac{1}{2}b \text{ and } b \neq 0$$

$$\mathbf{E.} \qquad a = -\frac{3b}{4} \text{ and } b \neq 0$$

Question 6

If the area bounded by the x-axis, y-axis, the function $f(x) = \cos(x)$ and the line x = a is equal to the area bounded by the x-axis, the function $g(x) = \sin(2x)$ and x = a, then given that $0 < a < \pi$, the value of a is

A.
$$\frac{\pi}{8}$$

B.
$$\frac{\pi}{4}$$

C.
$$\frac{3\pi}{8}$$

$$\mathbf{D.} \quad \frac{\pi}{2}$$

$$\mathbf{E.} \qquad \frac{5\pi}{8}$$

Question 7

The average value of the function $f(x) = |x\cos(x)|$ over the interval $\left[0, \frac{3\pi}{2}\right]$ can be found by evaluating which of the following expressions;

$$\mathbf{A.} \qquad \int_0^{\frac{3\pi}{2}} |x\cos(x)| dx$$

B.
$$\frac{1}{\pi} \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} x \cos(x) dx - \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} x \cos(x) dx$$

C.
$$\frac{2}{3\pi} \left(\int_0^{\frac{\pi}{2}} x \cos(x) dx - \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} x \cos(x) dx \right)$$

D.
$$\frac{2}{3\pi} \left(\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} x \cos(x) dx - \int_{0}^{\frac{\pi}{2}} x \cos(x) dx \right)$$

$$\mathbf{E.} \qquad \frac{2}{3\pi} \left(\int_0^{\frac{3\pi}{2}} x \cos(x) dx \right)$$

Question 8

If
$$\int_{0}^{10} f(x)dx = 2a$$
 then $\int_{0}^{10} 6f(x) - 2dx$ is equal to

A.
$$6a - 10$$

C.
$$12a - 20$$

D.
$$6a - 20$$

E.
$$2a - 20$$

If a function is given by

$$f(x) = \begin{cases} (x-1)^2 - 1 & x \le 2\\ 2x - 4 & 2 < x < 4\\ 4 & x \ge 4 \end{cases}$$

Then the derivative is given by

A.
$$f'(x) = \begin{cases} 2(x-1) & x < 2 \\ 2 & 2 < x < 4 \\ 0 & x > 4 \end{cases}$$

B.
$$f'(x) = \begin{cases} 2(x-1) & x < 2 \\ 2 & 2 < x < 4 \\ 4 & x \ge 4 \end{cases}$$

C.
$$f'(x) = \begin{cases} 2(x-1) & x < 2 \\ 2 & 2 < x < 4 \\ 4 & x > 4 \end{cases}$$

Then the derivative is given by

A.
$$f'(x) = \begin{cases} 2(x-1) & x < 2 \\ 2 & 2 < x < 4 \\ 0 & x > 4 \end{cases}$$

B.
$$f'(x) = \begin{cases} 2(x-1) & x < 2 \\ 2 & 2 < x < 4 \\ 4 & x \ge 4 \end{cases}$$

C.
$$f'(x) = \begin{cases} 2(x-1) & x < 2 \\ 2 & 2 < x < 4 \\ 4 & x > 4 \end{cases}$$

D.
$$f'(x) = \begin{cases} 2(x-1) & x \le 2 \\ 2 & 2 < x < 4 \\ 4 & x \ge 4 \end{cases}$$

E.
$$f'(x) = \begin{cases} 2(x-1) & x \le 2 \\ 2 & 2 < x < 4 \\ 4 & x \ge 4 \end{cases}$$

E.
$$f'(x) = \begin{cases} 2(x-1) & x \le 2 \\ 2 & 2 < x < 4 \\ 4 & x \ge 4 \end{cases}$$

E.
$$f'(x) = \begin{cases} 2(x-1) & x \le 2\\ 2 & 2 < x < 4\\ 0 & x > 4 \end{cases}$$

Question 10

If a function is defined by f(x) and

- f'(x) > 0 for x < -1
- f'(x) < 0 for -1 < x < 1
- f'(x) < 0 for 1 < x < 3
- f'(x) > 0 for x > 3
- f'(x) = 0 for $x = \{-1, 1, 3\}$

Then the number of stationary points of inflections, local maxima and local minima respectively are

- Α. 1, 1, 1
- в. 1, 2, 0
- C. 1, 0, 2
- D. 0, 2, 1
- Ε. 0, 3, 0

If $f'(x) = 4x^3 + \frac{1}{x^2} - \frac{1}{x}$ and f(x) passes through the point (1,2) then the rule for f(x) is given by

A.
$$f(x) = x^4 - \frac{1}{x} - \ln|x|$$

B.
$$f(x) = \frac{1}{4}x^4 - \frac{1}{x} - \ln|x| + 2$$

C.
$$f(x) = x^4 - \frac{1}{x} - \ln|x| + 2$$

B.
$$f(x) = \frac{1}{4}x^4 - \frac{1}{x} - \ln|x| + 2$$

C. $f(x) = x^4 - \frac{1}{x} - \ln|x| + 2$
D. $f(x) = \frac{1}{4}x^4 + \frac{1}{x} + \ln|x| + 2$

$$\mathbf{E.} \qquad f(x) = x^4 + \ln|x|$$

SECTION 2 - Extended response questions

	testion 1 The depth of a river is modelled by the function $d: [-25, 25] \to R$, $d(x) = \frac{1}{50} (x^2 - 625)$ where x is the horizontal sance from the lowest point of the bank in x and $d(x)$ is the depth of x .
	cance from the lowest point of the bank in m and $d(x)$ is the depth of the river in m . The river carries flowing Find the cross-sectional area of the river in m^2
	·
^	2 marks
s:[-	time, sediment builds up on the bottom of the river. The layer of sediment can be modelled by the function $[a,a] \to R$, $[s(x)] = -\sqrt{\frac{3}{25}(625-x^2)}$.
b.	Find the value of a .
	1 mark
	Find the cross-sectional area of the sediment on the bottom of the river correct to the nearest square metre.
	the first correct to the hearest square metre.
,	
-	
-	

	river winds its way around the rainforest and follows a path of the function
g:[-	$-3,10] \rightarrow R, g(x) = -\frac{3}{x+a} - bx + 5$. All units are in kilometers. A Nuclear Power Plant needs to draw water
from	the river to cool the reactor, which is situated at the origin, $(0,0)$.
d.	Given that $g(x)$ has a turning point at $(\sqrt{6}-3,\frac{13}{2}-\sqrt{6})$, find the values of a and b, where $a>2$ and $b<5$
	3 marks
follow	all canal redirects some of the flow of the river, bypassing the stationary point of the function. This canal is the function $h: \left[-\frac{12}{5}, 3\right] \to R, h(x) = \frac{1}{3}x + 2$. Another small canal is to be dug from the original canal to de cooling water to the power plant.
е.	Find the minimum distance between the original canal and the Nuclear Power Plant, and the point on the canal at which this occurs.

 $4~\mathrm{marks}$

	water from the canal fills up a tank inside the Nuclear Power Plant. Over time water is taken from the tank fed into and out of the reactor to control the temperature. The volume flow rate of water into the reactor is by $V': [0,180] \to R$, $V'(t) = e^{-\frac{1}{15}(t-30)} + \cos(\frac{1}{15}t)$ m ³ /s and t is the time in seconds.					
f.	If, initially, the volume of water in the tank is 20 m^3 , find the function for the volume of water left in the reactor in m^3 at time t .					
	·					
-						
-						

An inverted cone of radius r and heigth h is inscribed inside a larger cone of radius $5\,\mathrm{cm}$ and heigth $15\,\mathrm{cm}$ as in the diagram below.

- a.
- i. Show that $r = 5 \frac{1}{3}h$

ii. Find a function for the volume V of the smaller cone in cm³, in terms of h only

b. Find the maximum volume of the smaller cone in cm^3 correct to 2 decimal places and the value of h that it occurs at.

3 marks

:144

e iii ii

数数

10

旗區

22

92

188

機能

ii.

-122

4

1000

See

5.20

c. Graph the function V(h) for the appropriate domain, labelling the turning point.

Question	3

b.

						18100 1 11000	
							mara.
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.					
		***************************************			•		

							2 m
	2 2 2 1	4.6 - 5)	(0)				
If $f(x) = ax^3$	$-2ax^{-} + 3ax +$	4 for $a \in R \setminus$	$\{0\}$ and f ha	as <i>n</i> stationar	y points, then	what possible	values
If $f(x) = ax^3 + a$ have?							
If $f(x) = ax^3 + n$ have?							
If $f(x) = ax^3 + a$, , , , , , , , , , , , , , , , , , ,		
If $f(x) = ax^3 + a$ have?							
If $f(x) = ax^3 + a$ have?							
If $f(x) = ax^3 + a$ have?							
If $f(x) = ax^3 + a$ have?							

2 marks

END OF TEST