

MATHEMATICAL METHODS UNITS 3 & 4 TERM 3 TRIAL EXAMINATION 1

2016

Reading Time: 5 minutes Writing time: 1 hour

Instructions to students

All questions should be answered in the spaces provided.

There is a total of 30 marks available.

The marks allocated to each of the questions are indicated throughout.

Students may **not** bring any calculators or notes into the exam.

Where an exact answer is required a decimal approximation will not be accepted.

Where more than one mark is allocated to a question, appropriate working must be shown.

Diagrams in this trial exam are not drawn to scale.

Let $f(x) = \frac{1}{x} + 2x$ and g(x) = x - 1.

Write down the rule for f(g(x)).

$$f(g(x)) = \frac{1}{x-1} + 2(x-1)$$

ans

1 mark

Question 2

Solve the following equations for x.

 $2e^{(x+1)}=6.$

$$e^{x+1} = 3$$

:. x+1 = loge 3

 $2\log_5(x) - \log_5(3x) = 1$, x > 0b.

$$\therefore \quad \chi = 15 \tag{1}$$

2 marks

a. Let $y = \frac{x^3 - 1}{e^{2x}}$. $\leftarrow u$

Find $\frac{dy}{dx}$.

$$\frac{dy}{dx} = \frac{e^{2x}(3x^2) - (x^3 - 1)2e^{2x}}{(e^{2x})^2}$$

Simpli

1 mark

b. If $h(x) = e^{\tan(x)}$ then evaluate $h'(\frac{\pi}{3})$.

 $h'(x) = \frac{1}{\cos^2 x} \times e^{\tan(x)}$ $\therefore h'(\frac{\pi}{3}) = \frac{1}{(\cos \frac{\pi}{3})^2} \times e^{\tan(\frac{\pi}{3})}$

 $= \frac{(\pm)^{2} \times e}{(\pm)^{2}}$ $= 4e^{\sqrt{3}} \qquad (1) h'(x)$ (1) ans.

2 marks

The graph of y = f(x) where $f: R^+ \to R$, $f(x) = \frac{1}{x^2}$ is shown below.

- a. This graph of y = f(x) is dilated by a factor of 2 units from the y-axis to become the graph of the function g.
 - i. On the same set of axes as the graph of y = f(x) above, sketch the graph of y = g(x) labelling clearly two points that lie on the graph.
 - ii. Write down the rule for g.

$$g(x) = \frac{1}{(x^2)^2} = \frac{4}{x^2}$$

1+1=2 marks

Question 4 continues on the next page.

Question 4 (continued)

The graph of y = f(x) where $f: R^+ \to R$, $f(x) = \frac{1}{x^2}$ is shown again below.

b. The graph of y = f(x) is translated one unit to the right to become the graph of the function h.

i. On the same set of axes as the graph of y = f(x) above, sketch the graph of y = h(x) labelling clearly two points that lie on the graph. (1) graph + 2 pts

ii. Write down the equation of the vertical asymptote of the graph of y = h(x).

Write down the equation of the horizontal asymptote of the graph of y = h(x).

iv. Write down the rule for h.

$$h(x) = \frac{1}{(x-1)^2}$$

1+1+1+1=4 marks

$\frac{\text{Dom}}{1} \quad \text{if } x \in [0, 20]$

Question 5

Consider the function $g: R \to R$, $g(x) = \cos\left(\frac{\pi x}{8}\right)$.

a. Find the solution(s) to the equation $\cos\left(\frac{\pi x}{8}\right) - \frac{1}{\sqrt{2}} = 0$ for $x \in [0,20]$.

$$\cos\left(\frac{\pi x}{8}\right) = \frac{1}{\sqrt{2}}$$

$$BA = \frac{\pi}{4}$$

$$\frac{\pi x}{8} = \frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{4}$$

$$(1) \cos\left(\frac{1}{2}\right) = \frac{1}{\sqrt{2}}$$

$$\frac{\pi x}{8} = \frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{4}$$

$$(1) \cos\left(\frac{1}{2}\right) = \frac{1}{\sqrt{2}}$$

$$\therefore \pi x = 2\pi, 14\pi, 18\pi$$

$$\therefore x = 2, 14, 18$$

$$2 \text{ marks}$$

Consider the function $h: R \to R$, $h(x) = -\cos\left(\frac{\pi}{8}(x+4)\right) - 1$.

b. Find the value(s) of x for which h(x) is a minimum for $x \in [0,20]$.

Minimum value
$$h(x) = -2$$

 $\therefore -\cos(\frac{\pi}{8}(x+4)) - 1 = -2$
 $\therefore \cos(\frac{\pi}{8}(x+4)) = 1$
 $\therefore \frac{\pi}{8}(x+4) = 0, 2\pi, 4\pi, \dots$
 $\therefore x+4 = 0, 16, 32, \dots$
 $\therefore x = -4, 12, 28, \dots$ 2 marks

For $x \in [0, 20]$ min's occurs at x = 12.

- (1) Understanding shown of what 'minimum' means and an attempt to find x
- (1) ans.

Find the equation of the tangent to the graph of $y = \cos(2x)$ at the point where $x = \frac{\pi}{6}$.

$$m = \frac{dy}{dx} \text{ at } \frac{7}{6}$$

$$\frac{dy}{dx} = -2 \times \frac{\sqrt{3}}{2} = -\sqrt{3}$$

$$(x_1, y_1)$$
 $y_1 = \cos(\Xi) = \frac{1}{2}$

Question 7

a. Find the derivative of $\log_e(\sin(x))$.

$$deriv = \frac{\cos x}{\sin x}$$
 (1) and

1 mark

b. Hence evaluate
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{3\cos(x)}{\sin(x)} dx.$$

$$\log_{\theta} \left(\sin(x)\right) \qquad \frac{\cos x}{\sin x}$$

$$\log_{\theta} \left(\sin(x)\right) \qquad \frac{\cos x}{\sin x}$$

$$\lim_{\theta \to \infty} \frac{\sin(x)}{\sin x} dx = \log_{\theta} \left(\sin(x)\right)$$

$$\lim_{\theta \to \infty} \frac{1}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}$$

$$\lim_{\theta \to \infty} \frac{\cos(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} = 3\log_{\theta} \left(\sin(\frac{\pi}{6})\right)$$

$$\lim_{\theta \to \infty} \frac{\cos(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} = 3\log_{\theta} \left(\sin(\frac{\pi}{6})\right)$$

$$\lim_{\theta \to \infty} \frac{\cos(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} = 3\log_{\theta} \left(\sin(\frac{\pi}{6})\right)$$

$$\lim_{\theta \to \infty} \frac{\cos(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{6}} = 3\log_{\theta} \left(\sin(\frac{\pi}{6})\right)$$

$$\lim_{\theta \to \infty} \frac{\cos(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{6}} = 3\log_{\theta} \left(\sin(\frac{\pi}{6})\right)$$

$$\lim_{\theta \to \infty} \frac{\cos(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{6}} = 3\log_{\theta} \left(\sin(\frac{\pi}{6})\right)$$

$$\lim_{\theta \to \infty} \frac{\cos(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{6}} = 3\log_{\theta} \left(\sin(\frac{\pi}{6})\right)$$

$$\lim_{\theta \to \infty} \frac{\cos(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{6}} = 3\log_{\theta} \left(\sin(\frac{\pi}{6})\right)$$

$$\lim_{\theta \to \infty} \frac{\cos(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{6}} = 3\log_{\theta} \left(\sin(\frac{\pi}{6})\right)$$

$$\lim_{\theta \to \infty} \frac{\cos(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{6}} = 3\log_{\theta} \left(\sin(\frac{\pi}{6})\right)$$

$$\lim_{\theta \to \infty} \frac{\cos(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{6}} = 3\log_{\theta} \left(\sin(\frac{\pi}{6})\right)$$

$$\lim_{\theta \to \infty} \frac{\cos(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{6}} = 3\log_{\theta} \left(\sin(\frac{\pi}{6})\right)$$

$$\lim_{\theta \to \infty} \frac{\cos(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{6}} = 3\log_{\theta} \left(\sin(x)\right)$$

$$\lim_{\theta \to \infty} \frac{\cos(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{6}} = 3\log_{\theta} \left(\sin(x)\right)$$

$$\lim_{\theta \to \infty} \frac{\cos(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{6}} = 3\log_{\theta} \left(\sin(x)\right)$$

$$\lim_{\theta \to \infty} \frac{\cos(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{6}} = 3\log_{\theta} \left(\sin(x)\right)$$

$$\lim_{\theta \to \infty} \frac{\sin(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{6}} = 3\log_{\theta} \left(\sin(x)\right)$$

$$\lim_{\theta \to \infty} \frac{\sin(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{6}} = 3\log_{\theta} \left(\sin(x)\right)$$

$$\lim_{\theta \to \infty} \frac{\sin(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{6}} = 3\log_{\theta} \left(\sin(x)\right)$$

$$\lim_{\theta \to \infty} \frac{\sin(x)}{\sin(x)} dx = \left[3\log_{\theta} \left(\sin(x)\right$$

The graphs of the functions

$$f: R^+ \to R, f(x) = \frac{1}{x}$$

and
$$g: R^+ \to R, g(x) = \frac{x^2}{8}$$

are shown below.

The region enclosed by the graphs of y = f(x), y = g(x) and the line x = 1 is shaded in the diagram. Find the area of this shaded region.

Pt. of Intⁿ
$$\frac{1}{x} = \frac{x^2}{8}$$

$$\therefore x^3 = 8$$

Area =
$$\int_{1}^{2} (f(x) - g(x)) dx = \int_{1}^{2} \frac{1}{x} - \frac{x^{2}}{8}$$

= $\left[\log_{e} x - \frac{x^{3}}{24}\right]^{2}$

= $\left[\log_{e} 2 - \frac{8}{24}\right] - \left(\log_{e} 1 - \frac{1}{24}\right)$

= $\left[\log_{e} 2 - \frac{7}{24}\right] - \left[\log_{e} 1 - \frac{1}{24}\right]$

(1) $x \text{ value pt. of int}$

(1) Correct integral

(1) $x \text{ value pt. integration}$
 $x \text{ value}$

(1) $x \text{ value}$

(2) $x \text{ value}$

(3) $x \text{ value}$

(4) $x \text{ value}$

(6) $x \text{ value}$

(7) $x \text{ value}$

(8) $x \text{ value}$

(9) $x \text{ value}$

(1) $x \text{ value}$

The graphs of the functions

$$f: R \to R, f(x) = (x-1)^2$$

and
$$g: R^+ \to R$$
, $g(x) = \log_e(x)$

are shown below.

The graphs intersect at the points where x = a and x = b, a < b.

Show that a = 1. a.

Show that
$$a=1$$
.

 $f(x) = g(x)$ in dersect at $x = a$.

 $f(x) = (x-1)^2$. Intersects x axis at $x=1$
 $g(x) = \log_e(x)$ So $g(x)$ also has x -int of 1
 $0 = \log_e x$... $a = 1$
 $\lim_{x \to \infty} 1 = x$

Find the value of x for which the difference between the value of f and the value of gis a maximum for $x \in [1, b]$.

(1)
$$h'(x) = 0$$
 For $x \in [1,b)$, $g(x) > f(x)$

(1) ans.

For max min
$$0 = \frac{1}{2} - 2(x-1)$$

$$\therefore \quad \dot{\chi} = 2x - 2$$

$$0 = 2x^2 - 2x - 1$$

From graph above
$$\therefore x = 2 \pm \sqrt{12}$$
 3 marks $x \in [1, b)$ so min $m = 1 \pm \sqrt{3}$ occurs at $x = 1 + \sqrt{3}$

Maths Methods (CAS) 3 & 4 Trial Exam 1