

Student Nam	•	
Student Nam	•	

MATHEMATICAL METHODS UNITS 3&4 Exam 1

2020 Written Trial Examination

Reading time: 15 minutes
Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are to write in blue or black pen.
- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- · Question and answer book of 12 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your student number in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

At the end of the examination

• You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given, unless otherwise specified. In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question	1	(4	marks))

a.	If $y = \sqrt{3e^{2x} - e^{4x}}$, find $\frac{dy}{dx}$	2 marks
-		
-		
-		
-		
b.	Let $f(x) = x^2 \tan(3x)$ Evaluate $f'(\pi)$	2 marks
-		
_		
_		

Question 2 (4 marks)

Consider the functions $f: R \to R$, $f(x) = 3x^2 + x$ and $g: R \to R$, g(x) = 2x - 1.

a. State the rule of f(g(x)) in the form $ax^2 + bx + c$.

1 mark

b. Let $h: R \to R, h(x) = f(g(x))$.

Find the equation of the line perpendicular to the graph, h(x), when $x = \frac{1}{2}$.

Give your answer in the form ax + by = c.

3 marks

Question	3	(4	marks)	۱
Question	•	ι,	manks	,

Let $y = 3x \sin(2x)$.

a. -	Find $\frac{dy}{dx}$	1 mark
- b.	Hence, calculate $\int_{0}^{\pi/4} 3x \cos(2x) \ dx.$	3 marks

Question 4 (5 marks)

Let $f:[0,2\pi] \to R, f(x) = 2\sin\left(2\left(x - \frac{\pi}{12}\right)\right) - 1.$

a. Find the x – intercepts for f(x)

2 marks

b. Sketch the graph of f(x), labelling any endpoints, axial intercepts and turning points with their coordinates.

Question 5 (7 marks)

Let
$$f: R \setminus \{1\} \to R$$
, $f(x) = \frac{5-3x}{1-x}$.

a. Find the rule of $f^{-1}(x)$, stating the domain.

2 marks

b. Sketch the graph of $f^{-1}(x)$, labelling axial intercepts with their coordinates and asymptotes with their equations.

3 marks

c.	Find the area bounded by the graph of $f^{-1}(x)$, the x-axis, the line $x = 5$ and $x = 7$.	
	Express your answer in exact form or in the form $a + \log_e(b)$.	2 marks
-		_
_		

Question 6 (3 marks)

A fashion store employs seven people consisting of four females and three males. Only three staff can be rostered on at any time.

a.	Find the probability of the staff on duty all being the same sex.	2 marks
-		
-		
_		
_		
_		
b.	During the day, hundreds of people come through the store. Three in five customers purchase something during the day. On a particular day, 400 customers enter the shop.	1 mark
	What is the standard deviation of the Binomial Distribution of customers who buy goods at the store?	
_		
-		

A set of linear equations are given as

$$(m+1)x-2y = k+1$$
$$-mx+4y = 2-k$$

Find the values of m and k which would give infinite solutions.	3 marks

Question 8 (5 marks)

For events A and B from a sample space, $\Pr(A \mid B) = \frac{2}{q}$ and $\Pr(B \mid A) = \frac{1}{q+1}$.

Let $Pr(A \cap B) = \frac{1}{3}$.

a.	Find $Pr(A)$ in terms of q .	2 marks
-		
-		
-		
-		
b.	Find $Pr(B)$ in terms of q .	1 mark
-		
		2
c.	Given that A and B are independent events, solve for q .	2 marks
-		
-		
-		
-		
-		

Question 9 (5 marks)

A right-angled triangle fits a circle of radius of 8 units, shown in the figure below.

	Show that the	dimension	of the right	anales triangle	can be ave	araccad ac
а.	Show that the	/ unnension	or me ngm	-angles mangle	can be exp	nesseu as

2 marks

$$y = \frac{128}{x - 8} + 8$$

b.	Find the value of x that gives the maximum area of this triangle.	3 marks
~•	This the value of which gives the maximum area of this triangle.	5 mans

Mathematical Methods formulas

Measurement

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$		$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$		
$\frac{d}{dx}\Big((ax+b)^n\Big) = an\Big(ax+b\Big)^n$	$b)^{n-1}$	$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$		
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$		
$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, \ x > 0$		
$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$		$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$		
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$		
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a \sec^2(ax)$				
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$			

Probability

Pr(A) = 1 - Pr(A')	$Pr(A \cup B) = Pr(A) + Pr(B)$	$(B) - \Pr(A \cap B)$
$Pr(A B) = \frac{Pr(A \cap B)}{Pr(B)}$	mean	$\mu = \mathbb{E}(X)$