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SECTION A – continued
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Let f R R f x x: , ( )→ = 





 −3sin 22

5
.

The period and range of f are respectively
A.	 5π and [−3, 3]

B.	 5π and [−5, 1]

C.	 5π and [−1, 5]

D.	 5
2

5 1π and ][ ,−

E.	 5
2

3 3π and ][ ,−

Question 2
The set of values of k for which x2 + 2x − k = 0 has two real solutions is
A.	 {−1, 1}
B.	 (−1, ∞)
C.	 (−∞, −1)
D.	 {−1}
E.	 [−1, ∞)

SECTION A – Multiple-choice questions

Instructions for Section A
Answer all questions in pencil on the answer sheet provided for multiple-choice questions. 
Choose the response that is correct for the question.
A correct answer scores 1; an incorrect answer scores 0.
Marks will not be deducted for incorrect answers.
No marks will be given if more than one answer is completed for any question.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
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Question 3
Let f : R \{4} → R, f x a

x
( ) =

− 4
, where a > 0.

The average rate of change of f from x = 6 to x = 8 is
A.	 a loge (2)

B.	
a

e2
2log ( )

C.	 2a

D.	 −
a
4

E.	 −
a
8

Question 4

a x b x dxsin ( ) cos( )+( )∫0

6
π

 is equal to

A.	
2 3

2

−( ) −a b

B.	
b a− −( )2 3

2

C.	
2 3

2

−( ) +a b

D.	
2 3

2

−( ) −b a

E.	
2 3

2

−( ) +b a

Question 5
Let f ′(x) = 3x2 − 2x such that f (4) = 0.
The rule of f  is
A.	 f (x) = x3 − x2

B.	 f (x) = x3 − x2 + 48
C.	 f (x) = x3 − x2 − 48
D.	 f (x) = 6x − 2
E.	 f (x) = 6x – 24
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Question 6
A rectangular sheet of cardboard has a length of 80 cm and a width of 50 cm. Squares, of side length x centimetres, 
are cut from each of the corners, as shown in the diagram below.

50 cm

80 cm

x cm

A rectangular box with an open top is then constructed, as shown in the diagram below.

The volume of the box is a maximum when x is equal to
A.	 10

B.	 20

C.	 25

D.	
100

3

E.	
200
3
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Question 7
The discrete random variable X has the following probability distribution.

x 0 1 2 3

Pr(X = x) a 3a 5a 7a

The mean of X is

A.	 1
16

B.	 1

C.	
35
16

D.	 17
8

E.	 2

Question 8
An archer can successfully hit a target with a probability of 0.9. The archer attempts to hit the target 80 times. The 
outcome of each attempt is independent of any other attempt.
Given that the archer successfully hits the target at least 70 times, the probability that the archer successfully hits the 
target exactly 74 times, correct to four decimal places, is
A.	 0.3635
B.	 0.8266
C.	 0.1494
D.	 0.3005
E.	 0.1701

Question 9
The point (a, b) is transformed by

T
x
y

x
y













 =





















+
−

−












1
2
0 2

1
2
2

    0

     



If the image of (a, b) is (0, 0), then (a, b) is
A.	 (1, 1) 
B.	 (−1, 1) 
C.	 (−1, 0) 
D.	 (0, 1) 
E.	 (1, −1) 

–
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Question 10
Which one of the following statements is true for f : R → R, f (x) = x + sin (x)?
A.	 The graph of f has a horizontal asymptote
B.	 There are infinitely many solutions to f (x) = 4
C.	 f has a period of 2π
D.	 f ′(x) ≥ 0 for x ∈ R
E.	 f ′(x) = cos (x)

Question 11
A and B are events from a sample space such that Pr(A) = p, where p > 0, Pr(B|A) = m and Pr(B|A′) = n.
A and B are independent events when
A.	 m = n
B.	 m = 1 − p
C.	 m + n = 1
D.	 m = p
E.	 m + n = 1 − p

Question 12

If f x dx f x dx f x x dx( ) ( ) , ( )= = − +( )∫ ∫ ∫4 2
1

4

2

4

1

2
and then  is equal to

A.	 2

B.	 6

C.	 8

D.	
7
2

E.	
15
2

Question 13
The graph of the function f passes through the point (−2, 7).

If h x f x( ) = 





 +

2
5, then the graph of the function h must pass through the point

A.	 (−1, −12)
B.	 (−1, 19)
C.	 (−4, 12)
D.	 (−4, −14)
E.	 (3, 3.5)
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Question 14
The weights of packets of lollies are normally distributed with a mean of 200 g.
If 97% of these packets of lollies have a weight of more than 190 g, then the standard deviation of the distribution, 
correct to one decimal place, is
A.	   3.3 g
B.	   5.3 g
C.	   6.1 g
D.	   9.4 g
E.	 12.1 g

Question 15
Let f : [2, ∞) → R, f (x) = x2 – 4x + 2 and f (5) = 7. The function g is the inverse function of f.
g′(7) is equal to

A.	 1
6

B.	 5

C.	
7

14

D.	 6

E.	
1
7
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Question 16
Part of the graph of y = f (x) is shown below.

y

x
O 5 6

The corresponding part of the graph of y = f ′(x) is best represented by

y

x
O

6

5 6

y

x
O

y

x
O

y

x
O

y

x
O

A. B.

C. D.

E.

5 65 6

5 6

5
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Question 17
A box contains n marbles that are identical in every way except colour, of which k marbles are coloured red and the 
remainder of the marbles are coloured green. Two marbles are drawn randomly from the box.
If the first marble is not replaced into the box before the second marble is drawn, then the probability that the two 
marbles drawn are the same colour is

A.	
k n k

n

2 2

2
+ −( )

B.	
k n k

n

2 2

2
1+ − −( )

C.	
2 1

1
k n k
n n
( )
( )
− −
−

D.	
k k n k n k

n n
( ) ( )( )

( )
− + − − −

−
1 1

1

E.	 n
n

C k
n

k
n2

2 2

1





 −








−
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Question 18
The distribution of a continuous random variable, X, is defined by the probability density function f, where

f x
p x a x b

a b R( )
( )

=




− ≤ ≤
∈ +

0 otherwise
and ,

and a, b ∈ R +.
The graph of the function p is shown below.

y

x

(0, 2a)

(−a, 0)

y = p(x)

(b, b)

O

It is known that the average value of p over the interval [−a, b] is 
3
4 .

Pr(X > 0) is

A.	
2
3

B.	
3
4

C.	
4
5

D.	
7
9

E.	
5
6
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END OF SECTION A 
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Question 19
Given that tan (α) = d, where d > 0 and 0

2
< <α

π , the sum of the solutions to tan (2x) = d, where 0 5
4

< <x π , in terms 
of α, is
A.	 0

B.	 2α

C.	 π + 2α

D.	 π
α

2
+

E.	
3

2
( )π α+

Question 20
The expression logx (y) + logy (z), where x, y and z are all real numbers greater than 1, is equal to

A.	 − −
1 1

log ( ) log ( )y zx y

B.	
1 1

log ( ) log ( )x yy z
+

C.	 − −
1 1

log ( ) log ( )x yy z

D.	
1 1

log ( ) log ( )y zx y
+

E.	 logy(x) + logz(y)
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SECTION B – Question 1 – continued

Question 1 (11 marks)
Let f : R → R, f (x) = x2e–x2.

a.	 Find f ′(x). 1 mark

b.	 i.	 State the nature of the stationary point on the graph of  f at the origin. 1 mark

	 ii.	 Find the maximum value of the function f and the values of x for which the maximum occurs. 2 marks

	 iii.	 Find the values of d ∈ R for which f (x) + d is always negative. 1 mark

SECTION B

Instructions for Section B
Answer all questions in the spaces provided. Write using blue or black pen.
In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
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SECTION B – continued 
TURN OVER

c.	 i.	 Find the equation of the tangent to the graph of f at x = −1. 1 mark

	 ii.	 Find the area enclosed by the graph of f and the tangent to the graph of f at x = −1, correct to four 
decimal places. 2 marks

d.	 Let M(m, n) be a point on the graph of f, where m ∈ [0, 1].

	 Find the minimum distance between M and the point (0, e), and the value of m for which this occurs, 
correct to three decimal places. 3 marks
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SECTION B – Question 2 – continued

Question 2 (11 marks)
An amusement park is planning to build a zip-line above a hill on its property.

The hill is modelled by y x x
=

−3 30
2000

2( ) , x ∈ [0, 30], where x is the horizontal distance, in metres, from 

an origin and y is the height, in metres, above this origin, as shown in the graph below.

y

x
O 5 10 15 20 25 30

hill

10

2

4

6

8

a.	 Find 
dy
dx
. 1 mark

b.	 State the set of values for which the gradient of the hill is strictly decreasing. 1 mark
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SECTION B – Question 2 – continued 
TURN OVER

The cable for the zip-line is connected to a pole at the origin at a height of 10 m and is straight for 0 ≤ x ≤ a, 
where 10 ≤ a ≤ 20. The straight section joins the curved section at A(a, b). The cable is then exactly 3 m 
vertically above the hill from a ≤ x ≤ 30, as shown in the graph below.

y

x
O 5

3 m

10 15 20 25 30

A(a, b)

cable

10

8

6

4

2

hill

3 m

c.	 State the rule, in terms of x, for the height of the cable above the horizontal axis for x ∈ [a, 30]. 1 mark

d.	 Find the values of x for which the gradient of the cable is equal to the average gradient of the hill for  
x ∈ [10, 30]. 3 marks
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SECTION B – continued

The gradients of the straight and curved sections of the cable approach the same value at x = a, so there is a 
continuous and smooth join at A.

e.	 i.	 State the gradient of the cable at A, in terms of a. 1 mark

	 ii.	 Find the coordinates of A, with each value correct to two decimal places. 3 marks

	 iii.	 Find the value of the gradient at A, correct to one decimal place. 1 mark
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SECTION B – continued 
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CONTINUES OVER PAGE
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SECTION B – Question 3 – continued

Question 3 (9 marks)
During a telephone call, a phone uses a dual-tone frequency electrical signal to communicate with the 
telephone exchange.

The strength, f, of a simple dual-tone frequency signal is given by the function f t t t( ) sin sin= 





 + 








π π
3 6

, 
where t is a measure of time and t ≥ 0.
Part of the graph of y = f (t) is shown below.

y

t
O

1

2018161412108642    22 24

−2

−1

2

a.	 State the period of the function. 1 mark

b.	 Find the values of t where f (t) = 0 for the interval t ∈ [0, 6]. 1 mark
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SECTION B – continued 
TURN OVER

c.	 Find the maximum strength of the dual-tone frequency signal, correct to two decimal places. 1 mark

d.	 Find the area between the graph of f and the horizontal axis for t ∈ [0, 6]. 2 marks

Let g be the function obtained by applying the transformation T to the function f, where

T
x
y

a
b

x
y

c
d



















 =



















 +











0
0

and a, b, c and d are real numbers.

e.	 Find the values of a, b, c and d given that g t dt g t dt( ) ( )+ ∫∫ 2

6

2

0
 has the same area calculated in 

part d. 2 marks

f.	 The rectangle bounded by the line y = k, k ∈ R+, the horizontal axis, and the lines x = 0 and x = 12 has 
the same area as the area between the graph of f and the horizontal axis for one period of the dual-tone 
frequency signal.

	 Find the value of k. 2 marks
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SECTION B – Question 4 – continued

Question 4 (17 marks)
The Lorenz birdwing is the largest butterfly in Town A.
The probability density function that describes its life span, X, in weeks, is given by

f x
x x x

( )
( )

=
− ≤ ≤






4
625

5 0 5

0

3 4

elsewhere

a.	 Find the mean life span of the Lorenz birdwing butterfly. 2 marks

b. 	 In a sample of 80 Lorenz birdwing butterflies, how many butterflies are expected to live longer than 
two weeks, correct to the nearest integer? 2 marks

c.	 What is the probability that a Lorenz birdwing butterfly lives for at least four weeks, given that it lives 
for at least two weeks, correct to four decimal places? 2 marks
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SECTION B – Question 4 – continued 
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The wingspans of Lorenz birdwing butterflies in Town A are normally distributed with a mean of 14.1 cm 
and a standard deviation of 2.1 cm.

d.	 Find the probability that a randomly selected Lorenz birdwing butterfly in Town A has a wingspan 
between 16 cm and 18 cm, correct to four decimal places. 1 mark

e.	 A Lorenz birdwing butterfly is considered to be very small if its wingspan is in the smallest 5% of all 
the Lorenz birdwing butterflies in Town A.

	 Find the greatest possible wingspan, in centimetres, for a very small Lorenz birdwing butterfly in 
Town A, correct to one decimal place. 1 mark
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SECTION B – Question 4 – continued

Each year, a detailed study is conducted on a random sample of 36 Lorenz birdwing butterflies in Town A. 
A Lorenz birdwing butterfly is considered to be very large if its wingspan is greater than 17.5 cm. The 
probability that the wingspan of any Lorenz birdwing butterfly in Town A is greater than 17.5 cm is 0.0527, 
correct to four decimal places.

f.	 i.	 Find the probability that three or more of the butterflies, in a random sample of 36 Lorenz 
birdwing butterflies from Town A, are very large, correct to four decimal places. 1 mark

	 ii.	 The probability that n or more butterflies, in a random sample of 36 Lorenz birdwing butterflies 
from Town A, are very large is less than 1%.

	 	 Find the smallest value of n, where n is an integer. 2 marks

	 iii.	 For random samples of 36 Lorenz birdwing butterflies in Town A, P̂  is the random variable that 
represents the proportion of butterflies that are very large.

	 	 Find the expected value and the standard deviation of P̂ , correct to four decimal places. 2 marks

	 iv.	 What is the probability that a sample proportion of butterflies that are very large lies within one 
standard deviation of 0.0527, correct to four decimal places? Do not use a normal approximation. 2 marks
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SECTION B – continued 
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g.	 The Lorenz birdwing butterfly also lives in Town B.
	 In a particular sample of Lorenz birdwing butterflies from Town B, an approximate 95% confidence 

interval for the proportion of butterflies that are very large was calculated to be (0.0234, 0.0866), 
correct to four decimal places.

	 Determine the sample size used in the calculation of this confidence interval. 2 marks
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SECTION B – Question 5 – continued

Question 5 (12 marks)
Let f : R → R, f (x) = 1 – x3. The tangent to the graph of f at x = a, where 0 < a < 1, intersects the graph 
of f again at P and intersects the horizontal axis at Q. The shaded regions shown in the diagram below are 
bounded by the graph of f, its tangent at x = a and the horizontal axis.

y

x
O

P

a

(a, 1 − a3)

Q

y = f (x)

1

1

a.	 Find the equation of the tangent to the graph of f at x = a, in terms of a. 1 mark

b.	 Find the x-coordinate of Q, in terms of a. 1 mark

c.	 Find the x-coordinate of P, in terms of a. 2 marks
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Let A be the function that determines the total area of the shaded regions.

d.	 Find the rule of A, in terms of a. 3 marks

e.	 Find the value of a for which A is a minimum. 2 marks

Consider the regions bounded by the graph of f −1, the tangent to the graph of f −1 at x = b, where 0 < b < 1, 
and the l	axis.

f.	 Find the value of b for which the total area of these regions is a minimum. 2 marks

g.	 Find the value of the acute angle between the tangent to the graph of f and the tangent to the graph of 
f –1 at x = 1. 1 mark

END OF QUESTION AND ANSWER BOOK
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Mathematical Methods formulas

Mensuration

area of a trapezium 1
2
a b h+( ) volume of a pyramid 1

3
Ah

curved surface area  
of a cylinder 2π  rh volume of a sphere

4
3

3π r

volume of a cylinder π r 2h area of a triangle
1
2
bc Asin ( )

volume of a cone
1
3

2π r h

Calculus

d
dx

x nxn n( ) = − 1 x dx
n

x c nn n=
+

+ ≠ −+∫ 1
1

11 ,

d
dx

ax b an ax bn n( )+( ) = +( ) −1 ( )
( )

( ) ,ax b dx
a n

ax b c nn n+ =
+

+ + ≠ −+∫ 1
1

11

d
dx
e aeax ax( ) = e dx a e cax ax= +∫ 1

d
dx

x xelog ( )( ) =
1 1 0x dx x c xe= + >∫ log ( ) ,

d
dx

ax a axsin ( ) cos( )( ) =  sin ( ) cos( )ax dx a ax c= − +∫ 1

d
dx

ax a axcos( )( ) −=  sin ( ) cos( ) sin ( )ax dx a ax c= +∫ 1

d
dx

ax a
ax

a axtan ( )
( )

( ) ==
cos

 sec ( )2
2

product rule
d
dx
uv u dv

dx
v du
dx

( ) = + quotient rule
d
dx

u
v

v du
dx

u dv
dx

v






 =

−

2

chain rule
dy
dx

dy
du
du
dx

=
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Probability

Pr(A) = 1 – Pr(A′) Pr(A ∪ B) = Pr(A) + Pr(B) – Pr(A ∩ B)

Pr(A|B) = 
Pr

Pr
A B
B
∩( )

( )

mean µ = E(X) variance var(X) = σ 2 = E((X – µ)2) = E(X 2) – µ2

Probability distribution Mean Variance

discrete Pr(X = x) = p(x) µ = ∑ x p(x) σ 2 = ∑ (x – µ)2 p(x)

continuous Pr( ) ( )a X b f x dx
a

b
< < = ∫ µ =

−∞

∞

∫ x f x dx( ) σ µ2 2= −
−∞

∞

∫ ( ) ( )x f x dx

Sample proportions

P X
n

=̂ mean E(P̂ ) = p

standard 
deviation

sd P p p
n

(ˆ ) ( )
=

−1 approximate 
confidence 
interval

,p z
p p

n
p z

p p
n

−
−( )

+
−( )











1 1ˆ ˆ ˆˆˆ ˆ
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