

Victorian Certificate of Education – Free Trial Examinations

					Letter
STUDENT NUMBER					

MATHEMATICAL METHODS

Free Trial Written Examination 1

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
8	8	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 11 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your **student number** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

At the end of the examination

• You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1 (4 marks)

я.	Let $v = \frac{\sin(x)}{x}$	
а.	Let $y = \frac{3x^2}{}$	•

Find $\frac{dy}{dx}$.

2 marks

b.	Let $f(x) = 4e^{\sqrt{x}}$.

Evaluate f'(4).

2 marks

Question 2 (4 marks)

a. Let $g:(2,\infty) \to \mathbb{R}$, $g(x) = \frac{x}{x-2}$.

i. Show that $\frac{x}{x-2} = 1 + \frac{2}{x-2}$.

1 mark

ii. Hence, find an antiderivative of g(x) with respect to x.

1 mark

b. The derivative of $f:(0,\infty) \to \mathbb{R}$ with respect to x is given by the rule $f'(x) = \pi \cos(\pi x) + \frac{2}{\sqrt{x}}$. Given that $f\left(\frac{1}{4}\right) = \frac{1}{\sqrt{2}}$, find f(x) in terms of x.

2 marks

Question	3	(4	marks
Question	J	(+	marks

a.	Find all solutions to the equation $2\sin(\pi x) - \sqrt{3} = 0$ for $x \in (-2, 1)$.	2 marks

b.	Given that $2\log_e(a+3) - \log_e(b^2) = 2$, where $a > -3$ and $b < 0$, find a in terms of b .	2 marks

Question	4	(5	marks)	١
Question		ıυ	marks	,

Lemons on a particular farm have masses which vary normally with a mean of 100 g and a standard deviation of 8 g. In this question, use the fact that Pr(Z > 1) = 0.16, correct to two decimal places, where Z denotes the standard normal variable.

	ally selected lemon is known to have a mass of less than 100 g. probability that this lemon has a mass of more than 92 g, correct to two decimal	2 1
represents	tes of size n drawn from a large population, let \hat{P} denote the random variable that \hat{P} the sample proportion of lemons from the farm that are of less than average mass. mallest integer value of n such that $sd(\hat{P}) \le \frac{1}{48}$.	2 1
rind the s	matiest integer value of n such that $\operatorname{sd}(F) \le \frac{1}{48}$.	

Question 5 (5 marks)

Let $f: [-3, 3] \to \mathbb{R}$, $f(x) = \frac{1}{4}(x+2)(x-1)^2$. The rule of f can also be written as $f(x) = \frac{1}{4}(x^3 - 3x + 2)$.

a. Find the coordinates of the stationary point(s) of f.

2 marks

b. Sketch the graph of f on the axes provided below. Label the endpoints, any stationary points and any intercepts with the coordinate axes with their respective coordinates.

2 marks

c. Using the features of the graph, state the average value of f over its domain.

1 mark

Question 6 (6 marks)

Sally has kept records of when she walks her dog for an extended period of time. Let the random variable X represent the number of times Sally walks her dog on a given day. Assume that the number of times Sally walks her dog on a given day is independent of the number of times she walks her dog on any other day. The distribution of X is given in the table below.

x	0	1	2
Pr(X = x)	0.1	m	n

Collin Will 1 O	$m+c$, where $a,b,c \in \mathbb{R}$. Find the values of a , b and c .	3
Hence, show	that the maximum value of the variance of X occurs when $m = 0.3$.	1
For $m = 0.3$, f	and the probability that Sally will walk her dog at least three times across a	
duration of tw		2

Question	7	15	marka
Question	1	()	marks

Question 7 (5 marks) Let $f: [-5, \infty) \to \mathbb{R}$, $f(x) = \sqrt{x+5}$, let $g: (-\infty, 1] \to \mathbb{R}$, $g(x) = x^2 - 2x$ and define h(x) = f(g(x)).

- i. Show that the rule of h is given by $h(x) = \sqrt{(x-1)^2 + 4}$. 1 mark
 - 2 marks ii. State the domain and range of h.
- Find the rule, domain and range of h^{-1} , the inverse function of h.

2 marks

Question 8 (7 marks)

Let X be a continuous random variable with the probability density function

$$f(x) = \begin{cases} x\cos(ax) & 0 \le x \le b \\ 0 & \text{elsewhere,} \end{cases}$$

where a > 0 and the value of b is the x-coordinate of the first positive x-axis intercept of $y = x \cos(ax)$.

The graph of $y = x\cos(x)$ for $x \in \left[0, \frac{\pi}{2}\right]$ is shown below.

a.	i.	State a sequence of simple transformations that maps the graph of $y = x\cos(x)$ onto the
		graph of $y = x\cos(ax)$.

2 marks

ii. Hence, or otherwise, show that $b = \frac{1}{2}$	$\frac{\pi}{2a}$.
--	--------------------

1 mark

Find $\frac{d}{dx}[x\sin(ax)]$, and hence, if		
where $m, n \in \mathbb{N}$.		4

END OF QUESTION AND ANSWER BOOK