Instructions
Answer all questions in the spaces provided,

ue must be given, unless otherwise speclﬁed
» appropriate working must be shown,

Unless otherwise indicated, the diagrams in this book are not drawn to scale,

Question 1 (4 marks)
Lclf:[ )—>R f(x)-—h_l
a. i, Find f'(x).
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ii. Find an antiderivative of f(x).
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Question 2 (4 marks)
8 Letiy: R\[ }—)R f(x)=
3 3x-1
Find the rule of /!, |
ﬁ@’ iy
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b.  State the domain of £-!.
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Find the values of ¢ and d given lhat g= _,r"'
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Let g be the function obtained by applying the transformation 7 to the function £, where
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Question 3 (3 marks)

The only possible outcomes when a coin is tossed are a head or a tail. When an unbiased coin is tossed, the
probability of tossing a head is the same as the probability of tossing a tail.

Jo has three coins in her pocket; two are unbiased and one is biased. When the biased com is tossed, the
: o |
probability of tossing a head is 3

Jo randomly selects a coin from her pocket and tosses it.

a. Find the probability that she tosses a head
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b. Find the probability that she selected an unbiased coin, given that she tossed a head
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Question 4 (4 marks)

a. Solve l-cos[%):cos[%) forxe[-2x, 7).

b. The function fi[2n, 7] - R, f(x)= cos( g) is shuwfz on the axes below,
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Letg:[-2m,n] + R, g(x) =1 S(x).

Skelch the graph of g on the axes above. Label all points of intersection of the graphs of £ and g, and
the endpoints of g, with their coordinates.
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Question 5 (5 marks) i 0%
1 .
Let 2RV~ R, i'm~£—— ...... |

x 7 A

x =)
i Kvaluate f{=1}

jﬂm ) =

. Sketch the graph of' £ on the axes below, labellmg all asympiotes with their equatios
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Find e dvea oaumdad by Bic yragh ol £, the s ks, Ui Line
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Question 6 (3 marks)

Fred owns a company that produces thousands of peg
produced on one day and finds eight fauly pegs.

m.  What is the proportion of faulty pegs in
A\
P=

+]
b, Pegs are packed each day in boxes Each box holds 1
represents the propartion of faulty pegs in 4 box,

i

3 each day. He randomly selects 41 Pegs that are

this sample?

2 pegs, Let /* be the random varable that

The actual proportion of faulty pegs produced by the company cach day s f: i

Find !’r[f’ < { ] Express your answer in the form alb)”, where o and & are positive mtional numbery
14

and i 15 & pasitive integer. ’ I pirks
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Question 7 (4 marks]

11w graph of the relation y = /1~ 2 is shown on the axes below. £ is a point on the graph ofﬂm rtlxmn,
4 i the pomnt (-1, 0) end B is the point (x,0).

{'trﬂ) ‘10)

2. Find an expression lor the length £ in terms of x only.

LPQ: W

b, Find the maximum area of the triangle .{H‘P

Area= A0 = L= 152
2 (‘LD
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Question 8 {4 marks]

The function £2 R —» B, f(x) 15 a polysomial function of degree 4, Part o

i L ] Vthe graph oF Fic cho
The graph of £ eucles the v-axis al the oigin ETAPA OF S35 shown by,

(1.0 i) (1,0

B Fimsd the rule of /

:]C'(x): C\O(—FI)(XHI)XZ L olie 0\(-—%;).—'}: s
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Sy Ll Joo == ox+)X=1)¥
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the same ryle g5 i
Let e fh s R, by K=

bog (g(x e i
. B(0) = log (¥ 4y _}.wh-rrcfhnhctnuimnldnqnammhl

Jeo>0 A x> p

LI A L= s
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¢, State the range of &,
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Comsicler the functions £: R/, fiv1 =3+ 20 2 and RiRR plr)=p

B, St the rube of ¢ /(1))

j (j((' X)) = e}hﬂk%{?

nd the values of 5 for whiclt the derivative of KU L) 18 negative

ag(x“(j(ﬁm) & (D—)_)()Qz*lxﬁy :

Ste the rale of £ gixh)
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Fird the coordimates of the itstionary pount of the graph of f{gix)] 1 . |__'_1_: Afe
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jCO))-—_(f

e'<|

Xh(‘g }““ » COJZ{')

_g (.fa)J :':F;JO‘)) I mark
“r%’ (b & (e)

State the number of solutions ko g f14)) ¢ f(gi11)=0
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