The Mathematical Association of Victoria

Trial Exam 2018

MATHEMATICAL METHODS

WRITTEN EXAMINATION 1

STUDENT NAME	

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 11 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your **name** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are not drawn to scale.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given, unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1 (5 marks)

a.	Find $\frac{dy}{dx}$ when $y = 2x \log_e(2x)$.	2 marks

b.	Find $f'(0)$ when $f(x) = \frac{e^{x^2}}{e^x + 1}$.	3 marks

Question 2 (4 marks)

The graph of the function $f(x) = 18x^2 - ax^4$ where $a \in \mathbb{R}^+$ has a stationary point at $x = -\frac{3}{\sqrt{5}}$.

a. Show that the value of *a* is 5.

b. Hence state the coordinates of the stationary points for the graph of f. 2 marks

Question 3 (4 marks)

Let $g: \left[\frac{1}{2}, \infty\right) \to R$, where $g(x) = \sqrt{(2x-1)}$.

a. Show that the equation of the tangent to the curve at x = 1 is y = x.

2 marks

b. Find the area bounded by the graph of the function g, the line y = x and the x-axis. 2 marks

20	12	MA	v,	Mathem	atical	Metho	de T	rial E	vam 1

6

On	iestion	4	(3	marks	١
V	testion	4	כו	IIIai KS	,

A company is investigating the efficiency of one of its machines which packages muesli. A random sample of 400 packets was taken and the 95% confidence interval for the proportion of underweight muesli packets was found to be (0.024, 0.132).

a.	Find the sample proportion from which this interval was obtained.	1 mark
b.	Using the nearest integer value for <i>z</i> , determine the standard deviation of the sample.	2 marks
	, 	

Question 5 (6 marks)

a. Find the general solution to $\sqrt{3}\sin(2x) = \cos(2x)$.

2 marks

b. Show that there are no stationary points in the graph of $y = \sqrt{3} \tan(2x)$.

1 mark

c. Hence sketch the graph of $y = \sqrt{3} \tan(2x)$ for $x \in \left(-\frac{\pi}{4}, \frac{3\pi}{4}\right)$. On your graph label the points where $\sqrt{3} \tan(2x) = 1$ and the *x*-intercepts with their coordinates. Label any asymptotes with their equations.

3 marks

TURN OVER

201	0 1	AT A.	17	N / a + 1	nematic	a1 1 /	ath a de	Train 1	Errom	1
201	\times N	VI A	v	Matt	nematic	al IVI	ethods	s I mal	Exam	

9

Question 6 (4 marks)				
Solve $2\log_2(x-2) + \log_2(x) =$	= 0 for x.			

Question	7	(4	marks)	١

The height of water in a dam is modelled by the function h with rule $h(t) = -20\sin\left(\frac{\pi t}{12} + 10\right) + 20$, where h is the height in metres at time t hours after 9 am.

Find the average value of the height of water in a dam, from 9 am to 9 pm on a certain day, giving your answer in the form $a\cos(b)+c$, where a, b and c are real constants.

Question 8 (5 marks)

A random variable X has the following probability distribution, where a and b are real constants.

X	0	1	2	3
Pr(X = x)	0.1	а	b	0.1

a.	i. Find b in terms of a.	1 mark
	ii. Hence show that $E(X) = -a + 1.9$.	1 mark
b.	If $Var(X) = 0.56$ find all possible sets of values for a and b .	3 marks
		_

Question 9 (5 marks)

Let $f(x) = 2e^{1-x}$.

a. Find the rule and state the range for the inverse function, f^{-1} .

3 marks

b. Part of the graph of f is shown below. Sketch the graph of f^{-1} on the same set of axes. Label the asymptote with its equation and axial intercept with its coordinates.

2 marks

END OF QUESTION AND ANSWER BOOK