

2017 Trial Examination

THIS BOX IS FOR ILLUSTRATIVE PURPOSES ONLY

	STUDENT	Γ NUMBE	R				Letter
Figures							
Words						-	

MATHEMATICAL METHODS

Written examination 1

Reading time: 15 minutes Writing time: 60 minutes

QUESTION & ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
8	8	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape, notes of any kind, or a calculator of any kind.

Materials supplied

Question and answer book of 12 pages.

Instructions

- Print your name in the space provided on the top of this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic communication devices into the examination room.

© TSSM 2017 Page 1 of 12

This page is blank

© TSSM 2017 Page 2 of 12

Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

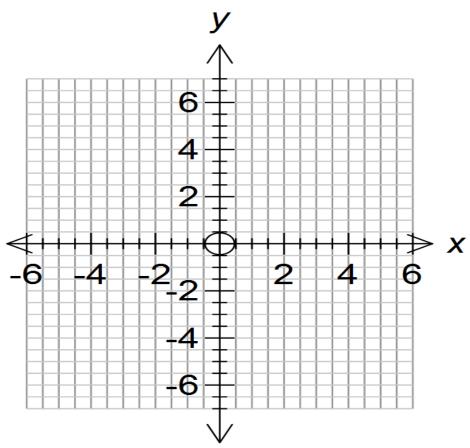
Question 1 (4 marks)

a. Let $y = (x^2 + 1)e^{4x}$. Find $\frac{dy}{dx}$, expressing your answer in factorised form.

b. Let
$$f(x) = \frac{\log_e(x^2)}{x^2}$$

i. Find f'(x)

ii. Find f'(e) 1 mark


TURN OVER

© TSSM 2017 Page 3 of 12

Question 2 (5 marks)

Let
$$f: R \setminus \{1\} \to R$$
, where $f(x) = 3 + \frac{2}{(x-1)^2}$.

a. Sketch the graph of f(x). Label the axis intercepts with their coordinates and label any equation(s) of asymptotes. 3 marks

b. Find the area enclosed by the graph of f(x), the lines x = 2 and x = 5, and the x-axis.

2 marks

© TSSM 2017

Question 3 (4 marks)

Let $f:[0,2\pi] \to R$, where $f(x) = log_e(cos x)$.

a.	Find the equation of the tangent to the graph of $f(x)$ at $x = \frac{\pi}{4}$.	2 marks
b.	Hence, find the angle θ from the positive direction of the <i>x</i> -axis to the tangent to the $f(x)$ at $x = \frac{\pi}{4}$, measured in the anticlockwise direction.	e graph of 1 mark
с.	Find the x values of the stationary points of the function f .	1 mark

TURN OVER

© TSSM 2017 Page 5 of 12

Question 4 (4 marks)

A class contains 5 boys and 10 girls. The teacher runs a four question quiz at the end of each lesson and selects a student at random to answer these questions. The teacher can select the same student to answer any number of questions.

•	What is the probability that the number of boys selected in a given lesson is zero? 1 mark
	What is the probability that at least one of the students selected in the lesson is a boy? 1 mar
	What is the probability that no boy is selected in exactly three of the five consecutive lessons? Give your answer in the form ap^mq^n , where a , m and n are positive integers and and q are rational numbers. 2 mark

© TSSM 2017 Page 6 of 12

Question 5 (10 marks)

a. Let $f: D \to R$, where $f(x) = log_e(1 - x^2)$

i. Find the maximal domain, D, of f.

1 mark

Let $g: (-1, 0] \to R$, where $g(x) = log_e(1 - x^2)$

ii. Find the rule for g^{-1} .

2 marks

iii. Find the domain and range of g^{-1} .

2 marks

b. Let $h(x) = \sqrt{1 - e^x}$ and $k(x) = -1 - x^2$.

Given that the composite function h(k(x)) is defined,

i. Find the rule for h(k(x))

1 mark

Question 5 - continued TURN OVER

1 mark
3 marks

© TSSM 2017 Page 8 of 12

Question 6 (5 marks)

Let $f:[0,2\pi] \to 1$	R, where	$f(x) = \sin x$	1(2x) + 1
------------------------	----------	-----------------	-----------

a.	Find the x -intercepts of the graph of f .	2 marks
b.	Calculate the average rate of change of f over the interval $[0, 2\pi]$.	1 mark
c .	Calculate the average value of f between the x-intercepts of f .	2 marks

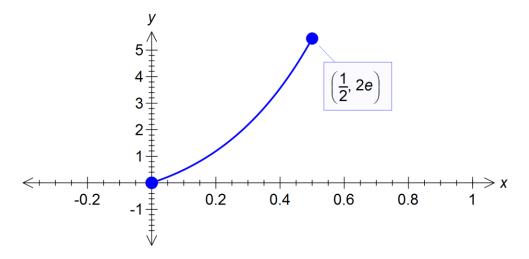
TURN OVER

© TSSM 2017 Page 9 of 12

Question 7 (3 marks)

A company produces batteries for calculators from two different machines A and B. 4% of the batteries produced by Machine A are faulty and 5% of batteries produced by Machine B are faulty. At the end of one day, Machine A produces 50 batteries and Machine B produces 80 batteries. The company owner selects one battery at random from all batteries produced in that day.

a.	What is the probability that the battery selected by the manager is faulty?	1 mark
b.	A battery is selected and found to be faulty.	
	What is the probability that this faulty battery was produced by Machine B?	2 marks


© TSSM 2017 Page 10 of 12

Question 8 (5 marks)

Let *X* be a continuous random variable with probability density function

$$f(x) = \begin{cases} 4xe^{2x} & 0 < x \le \frac{1}{2} \\ 0 & elsewhere \end{cases}$$

Part of the graph of f(x) is shown below.

a. Show that $\frac{d}{dx}(e^{2x}(2+bx)) = (4+b)e^{2x} + 2bxe^{2x}$ 1 mark

Question 8 – continued TURN OVER

Henc	ee, find $\Pr\left(X < \frac{1}{4}\right)$	2 ma
Show	w that the median m, of X is a solution of the equation $2e^{2m} - 4me^{2m} - 1 = 0$	
		2 ma
		2 IIIa

END OF QUESTION AND ANSWER BOOK

© TSSM 2017 Page 12 of 12