

Units 3 and 4 Maths Methods (CAS): Exam 1

Practice Exam Question and Answer Booklet

Duration: 15 minutes reading time, 1 hour writing time

Structure of book:

Number of questions	Number of questions to be	Number of marks
	answered	
11	11	40
	Total:	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers and rulers
- Students are not permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.
- No calculator is allowed in this examination.

Materials supplied:

• This question and answer booklet of 11 pages including a formula sheet.

Instructions

- You must complete all questions of the examination.
- Write all your answers in the spaces provided in this booklet.

Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working must be shown.

Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Questions	
Question 1	
a. Let $y = x^2 \sin(3x)$. Find $\frac{dy}{dx}$.	
	2 mark:
	Z IIIdirki
b. For $f(x) = \frac{x}{e^x}$, find $f'(2)$.	
-	2 marks
	Total: 4 marks
Question 2 Evaluate $\int_{1}^{2} \frac{1}{\sqrt{2x-1}} dx$.	
Evaluate $J_1 \sqrt{2x-1} ux$.	

2 marks

Question 3	
Solve $\tan\left(\frac{\theta}{2} + \frac{\pi}{4}\right) = \sqrt{3}$, where $\theta \in [0, 5\pi]$.	
(2 1)	
	4 marks
	4 Marks
Question 4	
Solve $e^{2x} - 6e^x = -8$, for x.	

\sim		_
()	uestion	5

Consider the functions:

$$f(x) = -4x^3$$

$$g(x) = \sqrt{2x - 1}$$

Assuming maximal domain for both $f(x)$ and $g(x)$, state whether $g(f(x))$ ex why.	ists and briefly explain
	1 mark
Write the equation for $f(g(x))$ and state the domain and range.	

3 marks

Total: 4 marks

Question 6

a. Find the exact area enclosed by the coordinate axes and $y = \ln(3 - x)$.

5 marks

b.	Find the image of the curve $y = log_e(3 - x)$ after applying the following series of transformations: - Reflection in the x-axis - Dilation from the x-axis of factor 2					rmations:
			x-axis of factor 2 init in the positive dire	ction of x-axis		
					Т-1	2 marks
The	estion 7 number of flo ibution:	owers, X, that Jer	nny sells in a given ho	ur is a random variab		al: 7 marks
Χ		4	5	6	7	
Pr(X = <i>x</i>)	0.2	5 0.4	0.3	7 0.1	
						1 mark
	ii. Find the	orobability that Je	enny sells more than t	the expected number	r of flowers.	
b.	Given that va	ariance of the dis	tribution is 0.81, find	the value of sd(2X-1).		1 mark
					.	2 marks

Question 8 Consider the function:
$f(x) = 3x^2 - 4x$
Find the equation of normal to the curve $f(x)$ at $x = 2$.
3 marks
Question 9 Find the sample size if the distribution of sample proportion \hat{p} has $p=0.1$ and standard deviation of \hat{p} is 0.2.
2 marks

Question 10

A random variable X is normal	y distributed with mean	36 and variance 9.
-------------------------------	-------------------------	--------------------

a.	Find Pr(33 <x<42).< th=""><th></th></x<42).<>	
		2 marks
b.	Find Pr (X<39 X>36).	

1 mark

Total: 3 marks

Question 11

An inverted cone container with height 20 cm and diameter 10cm is shown below. Oil is poured into a container at a constant rate of 5cm³/s. The height of oil at any given time is h.

a.	Express the volume (V cm³) of oil in terms of h.	
_		
		2 marks
b.	What is the volume of oil inside the cone when the height of the oil is $h=15\ cm$?	
_		
C.	Determine the height of the oil when $rac{d\mathbf{v}}{d\mathbf{h}} = oldsymbol{\pi}.$	1 mark
_		
_		
		2 marks

Total: 5 marks

Formula Sheet

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$		$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$		
$\frac{d}{dx}\Big((ax+b)^n\Big) = an\Big(ax+b\Big)^{n-1}$		$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$		
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$		
$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, \ x > 0$		
$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$		$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$		
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$		
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a \sec^2(ax)$				
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$			

Probability

$\Pr(A) = 1 - \Pr(A')$		$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$		
$Pr(A B) = \frac{Pr(A \cap B)}{Pr(B)}$				
	mean	$\mu = E(X)$	variance	$var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$

Prob	ability distribution	Mean	Variance
discrete	$\Pr(X=x) = p(x)$	$\mu = \sum x p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} x \ f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$E(\hat{P}) = p$
standard deviation	$\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p} - z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p} + z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$

End of Booklet