The Mathematical Association of Victoria

Trial Exam 2014

MATHEMATICAL METHODS (CAS)

WRITTEN EXAMINATION 1

STUDENT NAME	

Reading time: 15 minutes
Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: notes of any kind, blank sheets of paper, white out liquid/tape or a calculator of any type.

Materials supplied

- Question and answer book of 9 pages, a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your **name** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

	are there no real solutions to the following system of equations? mx + 2y = 6	
	x + (m-1)y = -3	
Question 2 (3 marks)		
Solve the equation $2\sin^2$	$(2x)-1=0$ for x where $x \in [0,\pi]$.	
	`	

Question	3	(3	marks)	۱
Question	•	ıυ	marks	,

Solve $2\log_2(2x+1) + \log_2(3) = 3$ for x.

Question 4 (4 marks)

- a. Sketch the graphs of $f:[-2,2) \rightarrow R$, f(x) = |x-1| and $g:(-2,2] \rightarrow R$, g(x) = |x+1| on the set of axes below.
- **b.** Hence sketch h(x) = f(x) + g(x) over its maximal domain on the same set of axes. 2 marks

Question 5 (5 marks)

Consider the function $f(x) = kx^2 \tan(2x)$, where k is a positive real constant.

a.	Find $f'(x)$.	2 marks

	$\langle \sigma \rangle = k \sigma (A + \sigma)$	
b.	Show that $f'\left(\frac{\pi}{2}\right) = \frac{k\pi(4+\pi)}{4\pi}$.	1 mark

c.	If $f'\left(\frac{\pi}{8}\right) = 0.75$, find the value of k .	2 marks

Question	6	(4	marks)	١
Question	U	ι –	marks	,

Question 6 (4 marks) Let $f: (-\infty, A] \to R, f(x) = x^2 + \frac{2}{3}x + 3$.

a.	Find the maximum value of A if f^{-1} exists.	1 mark
b.	Define f^{-1} .	3 marks

Question 7 (4 marks)

a. Show that the equation of the **normal** to the curve with equation $f(x) = e^{3x+2}$ at x = 0 is

	1	2
<i>y</i> = –	$\frac{1}{3e^2}x + e^2$	٤

1 mark

b.	Hence, find the area bounded by f , the normal line and the line $x = -2$.	3 marks

Question	8	(4	marks)	١
Question	U	1 T	marks	,

For events A and B, $Pr(A) = \frac{1}{4}$ and $Pr(A \cap B) = \frac{1}{5}$.

a. If $Pr(A' \cap B) = Pr(A)$ evaluate Pr(B).

Working Space

b. If events A and B are independent evaluate $\Pr(A \cup B)$.

Working Space

Question 9 (6 marks)

The probability density function for the random variable, X, is given by

$$f(x) = \begin{cases} \frac{k}{2x} & 1 \le x \le e^3 \\ 0 & \text{elsewhere} \end{cases}$$

a. Show that $k = \frac{2}{3}$.	2 marks
---	---------

b.	Find $Pr(X < 10 \mid X \ge 1)$.	2 marks

c.	Find $E(X)$ the mean of X .	2 marks

Question	10	(4	marks)
Ouesnon	10	(+	marks

1 mark
3 marks

END OF QUESTION AND ANSWER BOOKLET