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SECTION 1 – continued

Question 1
The function with rule f (x) = –3 tan(2πx) has period

A.	
2
π

B.	 2

C.	
1
2

D.	
1
4

E.	 2π

Question 2
The midpoint of the line segment that joins (1, –5) to (d, 2) is

A.	
d +

−







1
2

3
2

,

B.	
1

2
7
2

−





−

d ,

C.	
d −








4
2

, 0

D.	 0, 1
3
−








d

E.	
5

2
+








d , 2

Question 3
If x + a is a factor of 7x3 + 9x2 – 5ax, where a  R\{0}, then the value of a is
A.	 –4
B.	 –2
C.	 –1
D.	 1
E.	 2

SECTION 1

Instructions for Section 1
Answer all questions in pencil on the answer sheet provided for multiple-choice questions. 
Choose the response that is correct for the question.
A correct answer scores 1, an incorrect answer scores 0.
Marks will not be deducted for incorrect answers.
No marks will be given if more than one answer is completed for any question.
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SECTION 1 – continued
TURN OVER

Question 4
Part of the graph of y = f (x), where f : R → R, f (x) = 3 – ex, is shown below.

3

2

O
x

y

Which one of the following could be the graph of y = f –1(x), where f –1 is the inverse of f ?
A.

 

y

xO 3

B.

 

y

x3O

C.

 

y

xO

–3

D.

 

–3 O

y

x

E.

 

y

x
3O
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SECTION 1 – continued

Question 5

If f : (– ∞, 1) → R, f (x) = 2 loge(1 – x) and g: [–1, ∞) → R, g(x) = 3 1x + , then the maximal domain of the 
function f + g is
A.	 [–1, 1)
B.	 (1, ∞)
C.	 (–1, 1]
D.	 (– ∞, –1]
E.	 R

Question 6
For the function f (x) = sin(2πx) + 2x, the average rate of change for f (x) with respect to x over the interval 

1
4

, 5




 is

A.	 0

B.	
34
19

C.	
7
2

D.	
2 10

4
π +

E.	
23
4

Question 7
The function g: [–a, a] → R, g (x) = sin 2

6
x −

















π  has an inverse function.
The maximum possible value of a is

A.	
π
12

B.	 1

C.	
π
6

D.	
π
4

E.	
π
2
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SECTION 1 – continued
TURN OVER

Question 8
When Xenia travels to work, she either drives or takes the bus.

If she takes the bus to work one day, the probability that she takes the bus to work the next day is 
7

10
.

If she drives to work one day, the probability that she drives to work the next day is 
3
5
.

(Assume that Xenia will always travel to work according to these conditions only.)
What is the long-term probability that Xenia will take the bus to work? 

A.	
3
4

B.	
7

10

C.	
4
7

D.	
6

13

E.	
3
7

Question 9
Harry is a soccer player who practises penalty kicks many times each day.
Each time Harry takes a penalty kick, the probability that he scores a goal is 0.7, independent of any other 
penalty kick.
One day Harry took 20 penalty kicks.
Given that he scored at least 12 goals, the probability that Harry scored exactly 15 goals is closest to
A.	 0.1789
B.	 0.8867
C.	 0.8
D.	 0.6396
E.	 0.2017

Question 10
For events A and B, Pr (A ∩ B) = p, Pr (A′ ∩ B) = p −

1
8  and Pr (A ∩ B′ ) = 

3
5
p
.

If A and B are independent, then the value of p is
A.	 0

B.	
1
4

C.	
3
8

 

D.	
1
2

 

E.	
3
5

 



2013 MATHMETH (CAS) EXAM 2 6

SECTION 1 – continued

Question 11
If the tangent to the graph of y = eax, a ≠ 0, at x = c passes through the origin, then c is equal to
A.	 0

B.	
1
a

C.	 1

D.	 a

E.	 −
1
a

Question 12
Let y = 4 cos(x) and x be a function of t such that 

dx
dt  = 3e2t and x = 

3
2  when t = 0. 

The value of 
dy
dt  when x = π

2
 is

A.	 0

B.	 3
2

π
πloge








C.	 –4π

D.	 –2π

E.	 –12e

Question 13
If the equation f (2x) – 2f (x) = 0 is true for all real values of x, then the rule for f could be

A.	
x2

2  

B.	 2x

C.	 2x

D.	 log | |
e
x
2









E.	 x – 2
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SECTION 1 – continued
TURN OVER

Question 14
Consider the graph of y = 2x + c, where c is a real number. The area of the shaded rectangles is used to find 
an approximation to the area of the region that is bounded by the graph, the x-axis and the lines x = 1 and  
x = 5.

y

x
O–1 1 2 3 4 5 6

y = 2x + c

If the total area of the shaded rectangles is 44, then the value of c is
A.	 14

B.	 –4

C.	
14
5

D.	
7
2

E.	 −
16
5
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SECTION 1 – continued

Question 15
Let h be a function with an average value of 2 over the interval [0, 6].
The graph of h over this interval could be
A.

 

1 2 3 4 5 6 7

y

x
O

4

2

B.

 

1 2 3 4 5 6 7

y

x
O

4

2

C.

 

1 2 3 4 5 6 7
x

O

6

4

2

–2

y

D.

 

1 2 3 4 5 6 7
x

O

6

8

4

2

y

E.

 

1 2 3 4 5 6 7
x

O

4

2

y
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SECTION 1 – continued
TURN OVER

Question 16
The graph of f : [1, 5] → R, f (x) = x −1 is shown below.

O 5

y

x
1

Which one of the following definite integrals could be used to find the area of the shaded region?

A.	 x dx−( )∫ 1
1

5

B.	 x dx−( )∫ 1
0

2

C.	 2 1
0

5

− −( )∫ x dx

D.	 x dx2

0

2
1+( )∫

E.	 x dx2

0

2

( )∫

Question 17

A and B are events of a sample space.
Given that Pr(A|B) = p, Pr(B) = p2 and Pr(A) = p 1

3, Pr(B|A) is equal to 
A.	 p

B.	 p 4
3

C.	 p 7
3

D.	 p 8
3

E.	 p3
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SECTION 1 – continued

Question 18
Let g(x) = log2(x), x > 0.
Which one of the following equations is true for all positive real values of x?
A.	 2g(8x) = g(x2) + 8

B.	 2g(8x) = g(x2) + 6

C.	 2g(8x) = (g(x) + 8)2

D.	 2g(8x) = g(2x) + 6

E.	 2g(8x) = g(2x) + 64

Question 19

Part of the graph of a function f : [0, ∞) → R, f (x) = ex 3 sin(x) is shown below.
The first three turning points are labelled T1, T2 and T3.

y

x
O

T1

T2

T3

The x-coordinate of T3 is

A.	
8
3
π

B.	
16

3
π

 

C.	
13

6
π

 

D.	
17

6
π

 

E.	
29

6
π
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END OF SECTION 1
TURN OVER

Question 20
A transformation T : R2 → R2, T

x
y

x
y


















 = −

















 +










1 0
0 1

5
0

 maps the graph of a function f to the graph of  
y = x2, x  R.
The rule of f is
A.	 f (x) = –(x + 5)2

B.	 f (x) = (5 – x)2

C.	 f (x) = –(x – 5)2

D.	 f (x) = –x2 + 5

E.	 f (x) = x2 – 5

Question 21
The cubic function f : R → R, f (x) = ax3 – bx2 + cx, where a, b and c are positive constants, has no stationary 
points when

A.	 c b
a

>
2

4
 

B.	 c b
a

<
2

4

C.	 c < 4b2a

D.	 c b
a

>
2

3
 

E.	 c b
a

<
2

3
 

Question 22
Butterflies of a particular species die T days after hatching, where T is a normally distributed random variable 
with a mean of 120 days and a standard deviation of  days.
If, from a population of 2000 newly hatched butterflies, 150 are expected to die in the first 90 days, then the 
value of  is closest to
A.	   7 days
B.	 13 days
C.	 17 days
D.	 21 days
E.	 37 days
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SECTION 2 – Question 1 – continued

Question 1 (12 marks)
Trigg the gardener is working in a temperature-controlled greenhouse. During a particular 24-hour 

time interval, the temperature (T °C) is given by T(t) = 25 + 2cos π t
8







 , 0 ≤ t ≤ 24, where t is the 

time in hours from the beginning of the 24-hour time interval.

a.	 State the maximum temperature in the greenhouse and the values of t when this occurs. 2 marks

b.	 State the period of the function T. 1 mark

c.	 Find the smallest value of t for which T = 26. 2 marks

SECTION 2

Instructions for Section 2
Answer all questions in the spaces provided.
In all questions where a numerical answer is required, an exact value must be given unless otherwise 
specified.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
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SECTION 2 – Question 1 – continued
TURN OVER

d.	 For how many hours during the 24-hour time interval is T ≥ 26? 2 marks
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SECTION 2 – Question 1 – continued

Trigg is designing a garden that is to be built on flat ground. In his initial plans, he draws the graph of  
y = sin(x) for 0 ≤ x ≤ 2π and decides that the garden beds will have the shape of the shaded regions  
shown in the diagram below. He includes a garden path, which is shown as line segment PC.

The line through points P 2
3

3
2

π ,








 and C(c, 0) is a tangent to the graph of y = sin(x) at point P.

XO

y

x
C(c, 0)

1

–1

P 2π
3

3
2

,










2π

e.	 i.	 Find 
dy
dx

 when x = 
2
3
π
. 1 mark

	 ii.	 Show that the value of c is 3 2
3

+
π . 1 mark
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SECTION 2 – continued
TURN OVER

In further planning for the garden, Trigg uses a transformation of the plane defined as a dilation of 
factor k from the x-axis and a dilation of factor m from the y-axis, where k and m are positive real 
numbers.
f.	 Let X′, P′ and C′ be the image, under this transformation, of the points X, P and C respectively.
	 i.	 Find the values of k and m if X′P′ = 10 and X′C′ = 30. 2 marks

	 ii.	 Find the coordinates of the point P′. 1 mark
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SECTION 2 – Question 2 – continued

Question 2 (11 marks)
FullyFit is an international company that owns and operates many fitness centres (gyms) in several 
countries. At every one of FullyFit’s gyms, each member agrees to have his or her fitness assessed 
every month by undertaking a set of exercises called S. There is a five-minute time limit on any 
attempt to complete S and if someone completes S in less than three minutes, they are considered 
fit.
a.	 At FullyFit’s Melbourne gym, it has been found that the probability that any member will

	 complete S in less than three minutes is 
5
8
. This is independent of any other member.

	 In a particular week, 20 members of this gym attempt S.
	 i.	 Find the probability, correct to four decimal places, that at least 10 of these 20 

members will complete S in less than three minutes. 2 marks

	 ii.	 Given that at least 10 of these 20 members complete S in less than three minutes, what 
is the probability, correct to three decimal places, that more than 15 of them complete S 
in less than three minutes? 3 marks
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SECTION 2 – continued
TURN OVER

b.	 Paula is a member of FullyFit’s gym in San Francisco. She completes S every month as 
required, but otherwise does not attend regularly and so her fitness level varies over many 
months. Paula finds that if she is fit one month, the probability that she is fit the next month  

is 
3
4 , and if she is not fit one month, the probability that she is not fit the next month is 

1
2

.

	 If Paula is not fit in one particular month, what is the probability that she is fit in exactly two 
of the next three months? 2 marks

c.	 When FullyFit surveyed all its gyms throughout the world, it was found that the time taken by 
members to complete S is a continuous random variable X, with a probability density function 
g, as defined below.

g x

x x

x x( )

( )

=

− +
≤ ≤

+
< ≤

3 64
256

3

29
128

3 5

0

3
      1

          

 
                         elsewheree















	 i.	 Find E(X), correct to four decimal places. 2 marks

	 ii.	 In a random sample of 200 FullyFit members, how many members would be expected 
to take more than four minutes to complete S? Give your answer to the nearest integer. 2 marks
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SECTION 2 – Question 3 – continued

Question 3 (19 marks)
Tasmania Jones is in Switzerland. He is working as a construction engineer and he is developing a 
thrilling train ride in the mountains. He chooses a region of a mountain landscape, the cross-section 
of which is shown in the diagram below.

y

x
O

y = f (x)

E

F
G

B(4, 0)

A

D

lake

0 1
2

,







C(2, 0)

The cross-section of the mountain and the valley shown in the diagram (including a lake bed) is 
modelled by the function with rule

f x x x( ) = − +
3
64

7
32

1
2

3 2
.

Tasmania knows that A 0, 1
2







  is the highest point on the mountain and that C(2, 0) and B(4, 0) are 

the points at the edge of the lake, situated in the valley. All distances are measured in kilometres.
a.	 Find the coordinates of G, the deepest point in the lake. 3 marks
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SECTION 2 – Question 3 – continued
TURN OVER

Tasmania’s train ride is made by constructing a straight railway line AB from the top of the 
mountain, A, to the edge of the lake, B. The section of the railway line from A to D passes through a 
tunnel in the mountain.
b.	 Write down the equation of the line that passes through A and B. 2 marks

c.	 i.	 Show that the x-coordinate of D, the end point of the tunnel, is 
2
3 . 1 mark

	 ii.	 Find the length of the tunnel AD. 2 marks
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SECTION 2 – Question 3 – continued

In order to ensure that the section of the railway line from D to B remains stable, Tasmania 
constructs vertical columns from the lake bed to the railway line. The column EF is the longest of 
all possible columns. (Refer to the diagram on page 18.)
d.	 i.	 Find the x-coordinate of E. 2 marks

	 ii.	 Find the length of the column EF in metres, correct to the nearest metre. 2 marks

Tasmania’s train travels down the railway line from A to B. The speed, in km/h, of the train as it 
moves down the railway line is described by the function

V: [0, 4] → R, V x k x mx( ) = − 2,

where x is the x-coordinate of a point on the front of the train as it moves down the railway line, 
and k and m are positive real constants.

The train begins its journey at A 0, 1
2







. It increases its speed as it travels down the railway line.

The train then slows to a stop at B(4, 0), that is V(4) = 0.
e.	 Find k in terms of m. 1 mark



 21	 2013 MATHMETH (CAS) EXAM 2

SECTION 2 – continued
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f.	 Find the value of x for which the speed, V, is a maximum. 2 marks

Tasmania is able to change the value of m on any particular day. As m changes, the relationship 
between k and m remains the same.
g.	 If, on one particular day, m = 10, find the maximum speed of the train, correct to one decimal 

place. 2 marks

h.	 If, on another day, the maximum value of V is 120, find the value of m. 2 marks
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SECTION 2 – Question 4 – continued

Question 4 (16 marks)
Part of the graph of a function g: R → R, g(x) = 

16
4

2− x
 is shown below.

y = g(x)

C

B

y

x
O

A

a.	 Points B and C are the positive x-intercept and y-intercept of the graph of g, respectively, as 
shown in the diagram above. The tangent to the graph of g at the point A is parallel to the line 
segment BC.

	 i.	 Find the equation of the tangent to the graph of g at the point A. 2 marks

	 ii.	 The shaded region shown in the diagram above is bounded by the graph of g, the 
tangent at the point A, and the x-axis and y-axis.

	 	 Evaluate the area of this shaded region. 3 marks
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SECTION 2 – Question 4 – continued
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b.	 Let Q be a point on the graph of y = g(x).
	 Find the positive value of the x-coordinate of Q, for which the distance OQ is a minimum and 

find the minimum distance. 3 marks

The tangent to the graph of g at a point P has a negative gradient and intersects the y-axis at  
point D(0, k), where 5 ≤ k ≤ 8.

y = g(x)

C

B

y

x
O

D(0, k)

P

c.	 Find the gradient of the tangent in terms of k. 2 marks
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END OF QUESTION AND ANSWER BOOK

d.	 i.	 Find the rule A(k) for the function of k that gives the area of the shaded region. 2 marks

	 ii.	 Find the maximum area of the shaded region and the value of k for which this occurs. 2 marks

	 iii.	 Find the minimum area of the shaded region and the value of k for which this occurs. 2 marks
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Mathematical Methods (CAS)
Formulas

Mensuration

area of a trapezium:	 1
2
a b h+( ) 	 volume of a pyramid:	

1
3
Ah

curved surface area of a cylinder:	 2π  rh	 volume of a sphere:	
4
3

3π r

volume of a cylinder:	 π r 2h	 area of a triangle:	
1
2
bc Asin

volume of a cone: 1
3

2π r h

Calculus
d
dx

x nxn n( ) = −1

  
x dx

n
x c nn n=

+
+ ≠ −+∫

1
1

11 ,

d
dx
e aeax ax( ) =   e dx a e cax ax= +∫

1

d
dx

x xelog ( )( ) = 1   
1
x dx x ce= +∫ log

d
dx

ax a axsin( ) cos( )( ) =    
sin( ) cos( )ax dx a ax c= − +∫

1

d
dx

ax a axcos( )( ) −=  sin( )   
cos( ) sin( )ax dx a ax c= +∫

1

d
dx

ax a
ax

a axtan( )
( )

( ) ==
cos

 sec ( )2
2 	

product rule:  d
dx
uv u dv

dx
v du
dx

( ) = + 	 quotient rule: 
d
dx

u
v

v du
dx

u dv
dx

v






 =

−

2

chain rule:  dy
dx

dy
du
du
dx

= 	 approximation:  f x h f x h f x+( ) ≈ ( ) + ′( )

Probability
Pr(A) = 1 – Pr(A′)	 Pr(A ∪ B) = Pr(A) + Pr(B) – Pr(A ∩ B)

Pr(A|B) = 
Pr

Pr
A B
B
∩( )
( ) 	 transition matrices:    Sn = Tn × S0

mean:    µ = E(X) variance:    var(X) = σ 2 = E((X – µ)2) = E(X 2) – µ2

Probability distribution Mean Variance

discrete Pr(X = x) = p(x) µ = ∑ x p(x) σ 2 = ∑ (x – µ)2 p(x)

continuous Pr(a < X < b) = f x dx
a

b
( )∫ µ =

−∞

∞
∫ x f x dx( ) σ µ2 2= −

−∞

∞
∫ ( ) ( )x f x dx
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