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Section 1

Question 1	 C

	 	 sin(x) = sin2 (x)

sin(x)(1– sin(x)) = 0

	 sin(x) = 0 or 1

x= 0 2
2

, ,π π
π

 or , i.e. a total of 4 solutions.

Alternatively, a graph shows 4 intersections over the domain.

0.8

0.6

0.4

0.2

0

–0.2
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 x

–0.4

–0.6

–0.8

Question 2	 E

We have 

So 

f x dx f x dx f x dx

a f x dx b

a

( ) ( ) ( )

( )

− −

−

∫ ∫ ∫

∫

= +

= +

=

2

4

2

3

3

4

2

3

−− +

= −

−

−

∫

∫

f x dx b

f x dx b a

( )

( )

3

2

3

2

Question 3 	 E

f

f

−





=
−
=−

− =
−
+ =

1

3

1
1
3

3

3
1

3

1

2

1

6
( )

Question 4	 A
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If h is differentiable at x = 1, then

h A B
A B

h x
x A x
x

( )

( )

1 1 1 8 4
10

2 1
2 8

= + + =− + +
+ =

′ =
+ <

− +
also 

        
       x

h A
A

≥






′ = + =− +
=

1
1 2 2 8

4
( )

Thus B = 6.

Question 5	 C

Checking each function:

Inverse of  is clearly 

 so inverse i

f x x f x x

g x
x

( ) ( ) .

( )

= =

=

−1

4 ss given by  i.e. 

 so inverse is given by

x
y

y
x

h x x
x

= =

=
−

4 4

1
( )   . CAS solve gives 

 so inverse is gi

x y
y

y x
x

j x x
x

=
−

=
−

=
−

1 1
2( ) vven by . CAS solve gives x y

x
y

x
j x=

−
=
−
−
≠

2 2
1

( )

( )1 4
so g x

x
− =

( )1so 
1

x
h x

x
− =

−

.

.

.

,

Question 6	 B

The wheel has a diameter of 18 cm so h hmax min= =18 0 and .

The period of the function is 12 seconds so, for a sine or cosine function, 2
12

6

π π
n

n= ⇒ =

Now t = 0 corresponds to hmax =18 , which suggests a cosine function with amplitude 9 and vertical translation 9.

Thus h t
t

( ) cos= +





9 9

6

π .

As this is not an alternative given, use cos( ) sinx x= −








π
2

.

Thus h t
t

( ) sin= + −






9 9

2 6

π π
.

h t t t( ) sin sin= + −( )






= + −( )














9 9
6

3 9 1
6

3
π π 


.
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Question 7 	 D

f

g
x

x

x
( )=

+
−

9

6

For f

x

x

+ ≥
≥−

9 0

9

We must exclude x = 6 because we cannot divide by zero. 

Thus [ , ) ( , )− ∪ ∞9 6 6 .

Question 8 	 A

( ) ( )( )
( ) ( )( ) ( )
( ) ( )( ) ( )
( ) ( ) ( ) ( )( )

Given ,

2 2 2

2 1 2 3 6 18

h x g f x

h x g f x f x

h g f f

h g f

=

=′ ′ ′

=′ ′ ′

= = − = −′ ′ ′

Question 9	 B

x y+ = 5

Solving for y by CAS gives y x x= − +25 10 .

Differentiating, dy

dx x
=− +

5
1 .

At x = 16, gradient of tangent is − + =−
5

4
1

1

4
.

Equation of tangent:

y x− =− −1
1

4
16( )  which has a y intercept of 5. Therefore k = 5.

Equation of normal:

y x− = −1 4 16( )  which has a y intercept of –63. Therefore h=−63 .

k h− = 68

Question 10 	 C

The average rate of change of f x x x k( )= + +3 22  over the interval [0, 2] is given by

f f k k( ) ( ) ( )2 0

2

12 4

2
8

−
=

+ + −
=

Thus ( )
1

2
3 22

0

2
x x k+ + 8dx=∫

x x kx

k
k

3 2
0

2
16

8 4 2 16
2

+ +



 =

+ + =
=
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Question 11	 A

Define the events Ri and Bi, such that Ri represents a red ball drawn from urn i and Bi represents a blue ball 

drawn from urn i, i = 1, 2

Let x be the number of blue balls in urn 2.

11
25
11
25

1 2 1 2

1 2 1 2

= ∩ + ∩

= +

Pr( ) Pr( )

Pr( ) Pr( ) Pr( ) Pr( )

R R B B

R R B B

11
25
==

+







+ +









4
10

16
16

6
10 16x

x
x

OR

R

B

R

B

4

10

6

10

16

16 x+

x

16 x+

Solving on CAS gives x = 4.

Question 12	 A

Let the random variable X represent the number of successful first serves.

X Bi n p∼ ( , . )
.

. .

= =
= × =

= × × =

180 0 65
180 0 65 117

180 0 65 0 35

 
µ

σ
3 455

10

Question 13	 C

The initial state matrix is SO =











0 6

0 4

.

.
The win-lose probabilities can be tabulated:

Tomorrow
Win Lose

Today
Win
Lose

0 80 0 25
0 20 0 75
. .
. .












Thus the transition matrix is T =












0 8 0 25

0 2 0 75

. .

. .

The probability that the team will win its fourth match equals T SO
3

3
0 8 0 25

0 2 0 75

0 6

0 4
=






















. .

. .

.

.
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Question 14	 D

Let the increase in unit price per hat be $x.

Number of hats sold is 200 5− x .

Revenue from selling this number of hats is ( )( )200 5 90− +x x .

Cost from manufacturer for this number of hats is 60 200 5( )− x .

As profit = revenue – cost,

profit = P x x x x( )= −( ) +( )− −( )200 5 90 1 60 200 5

Simplifying on CAS gives P x x x( )=− + +5 50 60002 .

Maximum of when P x P x( ) ( ) when ′ = 0,

	 	
− + =

=
10 50 0

5

x

x
Number of hats sold is 200 5 200 25 175− = − =x

Question 15	 C

y

x

3

2

1

–1

           0.5           1         1.5           2         2.5           3         3.5–1.5 –1 –0.5 O

The graphs meet when x x x x= − =2 0,  2

Area bounded by the graphs equals x x x dx x x dx− − = −∫ ∫( ) ( )2

0

2
2

0

2
2 4

3
= .

As x = k divides the region in half, ( )2
2

3
2

0
x x dx

k

− =∫
x

x

k
k

k

2
3

0

2
3

3

2

3

3

2

3

−










 =

− =

Solving gives k = 1.
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Question 16	 A

The graph of the derivative needs to change from positive to negative within the domain.

This only occurs for the graph of f.

Question 17	 D

Range of f x( ) [ , ]− −2 9 3 will be .

So the range of f x( ) [ , ]−2 0 9 will be since the absolute value turns the negative results positive.

Finally, the range of 2 2 1 1 19f x( ) [ , ]− +  equals , by doubling the range and adding 1.

Question 18	 C

x kx k2 0+ + =

As x=−
1

2
 is a root, the equation can be written in factored form as x x k+







 +( )=1

2
2 0

Expanding gives x kx x k2 2
1

2
0+ + + =

Equating coefficients of the x term 

2
1

2

1

2
k k k+ = =−

Now the other root is x k=− =− ×− =2 2
1

2
1

Alternatively, solving on CAS:
2

1 1
0

2 2

1
gives 

2

k k

k

   − + − + =      

= −

2 1 1
So 0.

2 2
Solving on CAS gives

1
 or 1

2

x x

x x

− − =

= − =
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Question 19	 D

–9 –8 –7 –6 –5 –4 –3 –2 –1 1 2 3 4 5 6 7 8 9

y

x

4

3

2

1

0

L2

L1
–1

–2

–3

(–a, a2) (a, a2)

y = x2

Let the vertex of the triangle at the point of contact for L1 have coordinates (a, a2). In quadrant 2 the corresponding 

coordinates of the point of contact for L2 will have coordinates (– a, a2).

Consider L1 :
dy

dx
x a= =2 2

But we know the triangle is equilateral so  m1 60 3= =tan( )� .

Thus 

2 3

3

2

a

a

=

=

The length of each side of the triangle is 2a.

Using the Sine rule for area formula (on formula sheet):

A a a

A a

= ×

= = ×









=

1

2
2 2 60

2
3

2
3

3

2

3 3

4
2

2

( )( )sin( )�

Question 20	 A

We require ( ) ( )
( )

Pr 1.5 2
Pr 2 | 1.5

Pr 1.5

V
V V

V

≤ ≤
< ≥ =

≥
.

Using CAS, compute 

2

41.5

1.5

41

3

3
1

dv
v

dv
v

−

∫
∫

 which gives 0.5781= .
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Question 21	 A

The gradient function y f x= ′( )  has 4 x intercepts symmetrically placed either side of the y-axis. The function f x( )  

has stationary points at those locations.

Both A and C satisfy this condition completely.

Also notice ′f ( )0 is undefined corresponding to the cusp on each of the graphs in A and C.

Notice that ′ <f x( ) 0  for positive x values up to approximately 0.7. The gradient of a tangent to graph A is negative 

for these x values, but graph C has a positive gradient for these x values

Question 22	 C

On CAS, define ( )9log 2x =  and ( )5log 4y =

Check each alternative systematically.

( )
( )
( )

log 154

1 2 log 6
e

e

x y

x y

+
=

+

By the change of base rule, 

( )
( ) ( )6

log 15
log 15

log 6
e

e

=
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SECTION 2

Question 1 (15 marks)

a.	 x y=− =
3

4

1

2
 and  represent the vertical and horizontal asymptotes respectively.

	 Thus dom f R( ) |= −










3

4
.	 A1

	 The graph touches the x axis and is otherwise above it. We do not exclude y=
1

2
.

	 Thus ran f( ) ,= ∞[ )0 .	 A1

b.	 Given 
1 5

1
2 4 3

ax b

x cx d

+
− =

+ +
,

	
1 4 3 5 1 4 2 2 1

LHS
2 4 3 2 4 3 4 3

x x x

x x x

+ − − −
= = =

+ + + .	 M1

	 This gives a = 2, b = –1, c = 4 and d = 3.	 A1

c.	 i.	 g must be a one-to-one function with range 0,∞[ ) .

	 	 m n=− =
3

4

1

2
,  	 A1 A1

ii.	 For  gx x
x

x

x

x
∈ −










=−
−
+
=
−
+

3

4

1

2

2 1

4 3

1 2

4 3
, , ( ) .

	 	 The inverse is given by solving x
y

y
=
−
+

1 2

4 3
.	 M1

	 	 Use CAS : y
x

x
=
−
+

1 3

4 2

	 	 Thus g R g x
x

x
− −∞ → =

−
+

1 10
1 3

4 2
:[ , ) , ( ) .	 A1

	 iii.	

–5 –4 –3 –2 –1 1 2 3 4 5

6

5

4

3

2

1

0
–1

–2

1
3

0,(       )
1
3

,0(       )

y  

g

g–1

x

(       )1
0,

2 (       )1
,0

2

3

4
x = −

3

4
y = −

	 Graph of g and g –1	 A1
	 Correct intercepts 	 A1
	 Correct asymptotes	 A1
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	 iv.	 g x g x− − =1 0( ) ( )

	 	 Solve on CAS the equation 1 3

4 2

1 2

4 3

41 5

8

−
+
=
−
+

=
−x

x

x

x
x,  giving .	 A1

d.	 For x f x
x

x
≤ =

−
+

0 5
1 2

4 3
. , ( ) .

	 Using CAS,  ′ =
−
+

f x
x

( )
( )

10

4 3 2
.	 M1

	 Thus  ′ =−f ( )0
10

9
 and the equation of the tangent here is y x=− +

10

9

1

3
.	 A1

	 Solving simultaneously on CAS:

	 y x y
x

x
=− + =

−
+

10

9

1

3

2 1

4 3
 and and gives intersection at (–1.25777, 1.73086)

	 This gives p q=− =1 258 1 731. , . .	 A1

Question 2 (15 marks)

a.	 Using CAS, y
x dy

dx

x x

ex x
= =

−3 2 33

e
 gives 

( ) .	 A1

b.	 Stationary points occur when dy

dx

x x

ex
=

−
=

( )3
0

2 3

 	 x x x2 3 0 0( ) ,− = ⇒ =  3 	 M1

	 Thus a maximum at 3
27

3
,

e







  and a stationary point of inflection at (0, 0).	 A1 A1

c.	
x

e ex

3

3

27
≤

	 As e3 0> , we rewrite the in-equation:

	 x e x3 3 27− ≤ 	 M1

	 Taking logs of both sides:

	 log ( ) log ( ) log ( )e e
x

ex e3 3 27+ ≤− 	 M1

	 3 3 3 3log ( ) log ( )e ex x+ − ≤

	 Thus 3 3 3 3log ( ) log ( )e ex x≤ + − .	 A1
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d.	 i.	 y

x

2

1

–1

–2

–3

–4

–2 –1 1 2 3 4 5 6 7 8 9

(0,0) (3,0) y = 0

(    )y = 
x3 
ex

d 
dx

	 Intercept coordinates and asymptote 	 A1
	 Shape	 A1

	 ii.	
dy

dx

x x

ex
=

−( )3 2 3

	 	 The maximum and minimum will occur when 
d

dx

x x

ex

3
0

2 3−








= .

	 	 Thus x x x

ex

( )2 6 6
0

− +
=

	 	 x= ±3 3  (x = 0 is also a solution.)	 M1

	 	 From graph, maximum occurs at x
dy

dx
e= − = − −3 3 6 2 3 3 3 3, ( ) giving .

	 	 From graph, minimum occurs at x dy
dx

e= + =− + −3 3 6 2 3 3 3 3–, ( ) giving .	 A1

	 iii.	 A function is strictly decreasing if for all, a b f a f b< >, ( ) ( ) . 

	 	

–2 –2 1 2 3 4 5 6 7 8 9

2.5

2.0

1.5

1.0

0.5

0

–0.5

(1.27, 0.78)

(4.73, 0.34)
(3.0)(0,0)

y = 0

x

y

y = absolute value of derivative of 
x3 
ex

	 	 From graph, [ . , ] [ . , )1 27 3 4 73∪ ∞ .	 A1 M1
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e.	 Solving the equation x

e
k x

x

6

2
3= −( )  is equivalent to solving 

x

e
k x

x

3 2

3









= −( )

	 i.e. 
x

e
k x

x

3

3









=± −( ) .	 M1

	 	 The graph below illustrates, that for a negative k, 2 solutions are obtained.

	 Thus k < 0.	  A1

	

–9 –8 –7 –6 –5 –4 –3 –2 –1        1       2       3       4       5       6       7       8       9

y

x

4

3

2

1

0

–1

–2

–3

y =  
x3 
ex

y2 = –k(x – 3) 

Question 3 (18 marks)

a.	 i.	 Let X represent the number of these enquiries which came through the phone.

	 	

X Bi n p

E X np

np pX

∼ ( , . )

( ) .

( ) . .

= =
= = × =

= − = × ×

100 0 4

100 0 4 40

1 100 0 4 0 6

 

σ == 4 90.

	 A1

	 	 	 A1

	 ii.	 �Require Pr( ) .X ≥ =30 0 9852. Using CAS the answer is directly obtained from binomialcdf:

	 	 binomCdf(100, 0.4, 30, 100)	 A1

b.	 i.	 �For the eighth phone call to result in the first booking from phone enquiries on that day we need to have no 
bookings from the first seven phone calls, then a booking on the eighth call.

	 	 Thus required probability = − × −( ) ( )1 17 7k k k k or .	 A1

	 ii.	 Pr(eighth phone call results in fourth booking) = k × Pr(three bookings from seven phone calls)	 M1

	 	 k C k k k k× − = −7
3

3 4 4 41 35 1( ) ( ) 	 A1
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	 iii.	 We need to locate the maximum of the function f k k k( ) ( )= −35 14 4

	 	 A graph sketch from a CAS shows the maximum turning point at (0.5, 0.1367)	 M1

	 	

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

(0.5, 0.1367)

k

f(k)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

	 	 The maximum probability occurs when k = 0.5 and equals 0.1367.	 A1

c.	 Pr (no booking) = 0.42

	 Thus 0 4 1 0 5 1 0 1 1 0 422 3. ( ) . ( ) . ( ) .− + − + − =k k k .	 M1

	 Solving on CAS and noting 0 1 0 72< < =k k, . 	 A1

d.	 Pr( email via internet booking agency | a booking is made) = 
Pr(internet )

Pr( )

booking

booking

∩

	 Thus 0 25
0 5

0 1 0 4 0 5

2

3 2
.

.

. . .
=

+ +
k

k k k
. 	 M1

	 Solving on CAS and noting 0 1 0 27< < =k k, . .	 A1

e.	 i.	 We require 3 transitions to go from Sunday to Wednesday, i.e. T 3 1

0
×










.

	 	 Thus 

3

5

1

3
2

5

2

3

1

0

523

1125
602

1125

3






























 =























.	 M1

	 	 So the required probability of dining in the restaurant on Wednesday night equals 
523

1125
. 	 A1

	 ii.	 Consider Tn for large n. For example 

3

5

1

3
2

5

2

3

1

0

0 4545

0 5454

50






























 =












.

.
.

	 	 The percentage of nights the hotel can assume guests will dine in the hotel restaurant is 45%.	 A1
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f.	 Define Y as the random variable “weight of lobster”.

	 Then Y N∼ ( , )µ σ2 .

	 	 We are given that Pr( ) .Y m− ≤ =µ 0 25

	 	 Pr( ) .− ≤ − ≤ =m Y mµ 0 25 	 A1

	 	 Applying the Z transformation, Z
Y m

Z
m

=
−

− ≤ ≤ =
µ
σ σ σ

 gives Pr( ) .0 25

	 	 Thus Pr( ) .Z
m

≤− =
σ

0 375 .

	 	 − = =− =
m

invnorm
m

σ σ
( . ) . .0 375 0 3186 0 3186 Thus 	 M1

	 	 We require Pr( )Y m− ≤µ 3 .	

	 	 This is equivalent to finding Pr( )Z
m

≤
3

σ
, i.e. Pr(Z) ≤ 3 × 0.3186.

	 	 = ≤ =Pr( . ) .Z 0 9559 0 8304  	 A1

Question 4 (10 marks)

a.	
700

600

500

400

300

200

100

0

–100

–200

Rout

Rin

Rin – Rout 

121110987654321 13 14 15 16 17 18 19 t

	 	 	 	                                                                 Shape of graph	 A1
	                                                                                                          Critical points correctly located	 A1

b.	 Using the graph and CAS, we require

	 y R Rin out= −  to be above axis. Intersection points occur at t = 6.15095, 13.1152,
so between t = 6.151 and 13.115	 A1

c.	 The tank contains the initial quantity plus an increase or decrease according to

	 1200 00 0 00
0

15

+ − = + =∫ ( ) . .R R dtin out 12 8 4 71 2 4 71 .	 M1
	
So 2005 litres. 	 A1
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d.	 The inflow rate and outflow rate are equal at t = 6.15095, 13.1152

	 At t = 6.15095,

	 volume = . .12000 1200 498 97 701 024
0

6 15095
+ − = − =∫ ( )

.
R R dtin out  .	 A1

	 At t = 13.1152,

	 volume = .1200 1200 984 516 2184.516
0

13 1152
+ − = + =∫ ( )

.
R R dtin out  .

	 At t = 18

	 volume = . .1200 1200 655 2641 1855 2639
0

18
+ − = + =∫ ( )R R dtin out  

	 Hence the absolute minimum quantity of liquid occurs at t = 6.15.	 A1

Using appropriate integrals to compute volume           M1

e.	 At t = 18, there is a volume of 1855.26 litres remaining in the tank.

	 Thus 250sin4

18 6
1855 26

t
dt

T 




 =∫ . .	 A1

	 Solving on CAS gives T = 42 72. .

	 So tank is empty after 42 hours 43 minutes.	 A1


