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Question 1 
a. If  ( ) ( )( )log cos 3ef x x=   using the chain rule                            

 
( ) ( )

( )

log where cos 3
1 3sin 3

ey u u x
dy du x
du u dx

= =

= = −
 

 ( ) ( )
( ) ( )3sin 3

3tan 3
cos 3

xdy dy duf x x
dx du dx x

−
′ = = = = −     M1 

   33tan 3
18 6 3

f π π⎛ ⎞ ⎛ ⎞′ = − = − ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 3
18

f π⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

        A1   

b. If  ( )
2

sin 4
2

x
y

x
=     using the quotient rule 

 ( ) 2sin 4 2u x v x= =  

 ( )4cos 4 4du dvx x
dx dx

= =        M1 

 

( ) ( )
( )
( ) ( )( ) ( ) ( ) ( )

2

22

4 3 3

8 cos 4 4 sin 4

2

4 2 cos 4 sin 4 2 cos 4 sin 4
4

x x x xdy
dx x

x x x x x x x g xdy
dx x x x

−
=

− −
= = =

 

 ( ) ( ) ( )2 cos 4 sin 4g x x x x= −        A1   
 
Question 2 
 

 ( )
4 2

3 4 1
kx y
x k y k
− =

− + = +
 

 ( ) ( )

( ) ( )( )

2

2

4
4 12 4 12

3 4

4 12 6 2

k
k k k k

k

k k k k

−
Δ = = − + + = − − +

− +

Δ = − + − = − + −

    M1 

i. There is a unique solution when \{2, 6}k R∈ −     A1 

 When  2k =  the equations become   
2 4 2
3 6 3

x y
x y
− =
− =

  these lines are both the same 

 line as 2 1x y− = ,  therefore we have an infinite number of solutions when 2k =  
 

ii. When  6k = −  the equations become   
6 4 2
3 2 5

x y
x y

− − =
+ = −

  these lines are parallel  

 with different y-intercepts, therefore there is no solution when 6k = −  A1 
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Question 3 

 ( ) 2
4 9

dyf x
dx x

′ = =
+

        

 ( ) ( )
1
2

2 2 4 9
4 9

y f x dx x dx
x

−= = = × +
+

⌠
⎮
⌡ ∫     A1 

 
( ) ( )

( )

1
2

2 2 4 9 4 9
4

0 0 0 9 3

y f x x c x c

f c c

= = × × + + = + +

= ⇒ = + ⇒ = −
    M1 

 ( ) 4 9 3y f x x= = + −        A1 
 
 

Question 4 
 

a. ( ): , 1 2cos
6
xf R R f x π⎛ ⎞→ = − ⎜ ⎟

⎝ ⎠
 

 crosses the x-axis, when 0y = , finding the general solution 

 

1

1 2cos 0
6

2cos 1
6

1cos
6 2

12 cos 2
6 2 3

x

x

x

x n n

π

π

π

π ππ π−

⎛ ⎞− =⎜ ⎟
⎝ ⎠

⎛ ⎞ =⎜ ⎟
⎝ ⎠

⎛ ⎞ =⎜ ⎟
⎝ ⎠

⎛ ⎞= ± = ±⎜ ⎟
⎝ ⎠

      M1 

 12 2 , wherex n n Z= ± ∈        A1 
 

b. [ ] ( ): 0,12 , 1 2cos
6
xg R g x π⎛ ⎞→ = − ⎜ ⎟

⎝ ⎠
  

 amplitude is 2,  period 2 12

6

T π
π= =   and the range is [ ]1,3−    A1 

 crosses the x-axis at 2 and 10x x= =       0 and 1n n= =  from  a. 
  

 end-points ( ) ( )0 1 12 1f f= − = − ( )0, 1−   ( )12, 1−  

 maximum, when 3 when cos 1
6
xy π⎛ ⎞= = −⎜ ⎟

⎝ ⎠
 

                                      ( )so 6 6,3
6
x xπ π= =   A1 
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correct graph, on restricted domain, end-points, shape.    G1 
 
 

x

y

-6 -4 -2 0 2 4 6 8 10 12 14 16

-1

1

2

3

 
 

Question 5 

5
5log 5 log
2x x+ =       to solve let  5

1 1log 5 then log
log 5x

x

u x
u

= = =  

1 5
2

u
u

+ =   multiply both sides by 2u   
22 2 5u u+ =           M1 

 

( )( )

22 5 2 0
2 1 2 0
u u
u u
− + =

− − =
       

1log 5 , 2
2xu = =          M1 

1log 5 log 5 2
2x x= =      

in index form   
1

22 5 5 since 0x x x x= = = >  
 

25 , 5x =           A1 
       
 

( )0, 1−  
( )12, 1−  

( )6,3  
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Question 6 
 

2: 3 4xf y e−= −     interchange x and y 
1 2: 3 4yf x e− −= −     re-arrange to make y the subject 
23 4ye x− = +           M1 

2 4 42 log
3 3

y
e

x xe y− + +⎛ ⎞= ⇒ − = ⎜ ⎟
⎝ ⎠

 

1 4 1 3log or log
2 3 2 4e e

xy y
x

+⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
     A1 

but   ( )1 1domain range and range domain 4,f f R f f− −= = = = − ∞  
we must state the maximal domain of the inverse function 

( ) ( )1 1 1 4: 4, , log
2 3e

xf R f x− − +⎛ ⎞− ∞ → = − ⎜ ⎟
⎝ ⎠

     A1 
 

Question 7 

a. 
( )2

123
2

y
x

= −
+

   when  2
120 3 0
2

x y= = − =  

 crosses the x-axis when 0y = ⇒
( )

( )2
2

123 0 2 4
2

x
x

− = ⇒ + =
+

 

 2 2 0 and 4x x x+ = ± ⇒ = = −     ( ) ( )0,0 4,0−     A1 
 2x = −   is a vertical asymptote and 3y =  is a horizontal asymptote 
 ( )domain \{ 2} range ,3R − −∞       A1 
 correct graph, shape asymptotes, correct axial intercepts   G1 
\ 
 

x

y

-6 -4 -2 0 2 4 6

-8

-6

-4

-2

2

4

6

8

 

2 VAx = −
 

3 HAy =
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b. 
( )2

123
2

y
x

= −
+

 from the graph of 2
1y
x

=          

1
2

 mark for each correct transformation, the translations must come last. 

• reflect in the x-axis   2
1y
x

= −  

• dilate by a factor of 12 parallel to the y-axis ( or away from the x-axis ) 2
12y
x

= −  

• translate 2 units to the left parallel to the x-axis ( or away from the y-axis )  
( )2

12
2

y
x

= −
+

 

• translate 3 units up parallel to the y-axis ( or away from the x-axis ) 
( )2

123
2

y
x

= −
+

 

 

Question 8 
 

a. ( ) ( )1 4 4 for 0 8
16

0 elsewhere

x x
f x

⎧ − − ≤ ≤⎪= ⎨
⎪⎩

 

 
 ( ) ( )0 8 0f f= =  endpoints  ( ) ( )0,0 8,0  

 correct graph, shape, point at 14,
4

⎛ ⎞
⎜ ⎟
⎝ ⎠

, zero elsewhere   G2 

x

y

0 2 4 6 8 10

0.125

0.25

0.375

 
 

14,
4

⎛ ⎞
⎜ ⎟
⎝ ⎠
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b. ( ) ( )
( )

Pr 2
Pr 2 | 6

Pr 6
X

X X
X
<

< < =
<

 

 ( )
1 1 12
2 8 8Pr 2 | 6 1 1 71 2

2 8 8

X X
× ×

< < = =
− × ×

    by area of triangles 

 ( ) 1Pr 2 | 6
7

X X< < =          A1 
 

Question 9 
 

( ) 1Pr
3

A =  and ( ) 2Pr
5

B =  

Since A and B are independent, then andA B′ ′  are also independent                                                                 

( ) ( ) ( ) 2 3 2Pr Pr Pr
3 5 5

A B A B′ ′ ′ ′∩ = = × =           M1                                    

( ) ( ) ( ) ( )Pr Pr Pr Pr
2 3 2 10 9 6
3 5 5 15

A B A B A B′ ′ ′ ′ ′ ′∪ = + − ∩

+ −
= + − =

         

13
15

=           A1 

 
Question 10  
 

a. ( ) 2xf x xe−=    product rule 

                 

2

21 2

x

x

u x v e
du dv e
dx dx

−

−

= =

= = −
  

 ( ) 2 22x xf x e xe− −′ = −       does not need to be simplified   A1 
 

b. for a stationary point ( ) 0f x′ =  

 ( ) ( )2 1 2 0xf x e x−′ = − =         A1 

 since  2 11 1 10 1 2 0 and
2 2 2

xe x x f e− −⎛ ⎞≠ ⇒ − = ⇒ = =⎜ ⎟
⎝ ⎠

  

 stationary point is a maximum at 1 1,
2 2e

⎛ ⎞
⎜ ⎟
⎝ ⎠

     A1 
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c. from a.    ( )2 2 22x x xd xe e xe
dx

− − −= −  

 

( )

( )

2 2 2

2 22

2 2 22 2

2 2 2 2

2

2

12
2

1 1 1 2 1
2 4 4

x x x

x xx

x x xx x

x x x x

e xe dx xe

xe dx xee dx

e dx xe exe dx xe

xe dx xe e e x

− − −

− −−

− − −− −

− − − −

=−

=−

− − = +=

= − − = − +

∫
∫∫

∫∫

∫

    M1 

 The required area is   
2

2

0

xA xe dx−= ∫       A1 

 
( )

2
2

0

4

1 2 1
4
5 1
4 4

xA x e

A e

−

−

⎡ ⎤= − +⎢ ⎥⎣ ⎦

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

 ( )41 1 5
4

A e−= −         A1 
 

Question 11 

Since the mode is 5, ( ) ( ) ( )
( )

Pr 5
Pr 5 Pr 4 1

Pr 4
X

X X
X
=

= > = ⇒ >
=

    

substitute into  ( )
( )

( )
( )( )

Pr 1
Pr 1 1

X k n k p
X k k p
= + −

=
= + −

  with 4 and 8k n= =    

( )
4 51 4 5 5 9 5

5 1 9
p p p p p

p
> ⇒ > − ⇒ > ⇒ >

−
   M1 

Also since the mode is 5, ( ) ( ) ( )
( )

Pr 6
Pr 6 Pr 5 1

Pr 5
X

X X
X
=

= < = ⇒ <
=

    

substitute into ( )
( )

( )
( )( )

Pr 1
Pr 1 1

X k n k p
X k k p
= + −

=
= + −

  with 5 and 8k n= =    

( ) ( )3 1 2 1 2 2
6 1

p p p p p
p

< ⇒ < − ⇒ < −
−

     M1 

23 2
3

p p< ⇒ <       

so   1 2
5 2 5 2and
9 3 9 3

p p p< < = =       A1 

 
 

END OF SUGGESTED SOLUTIONS 


