MATHEMATICAL METHODS (CAS)

Unit 4 Targeted Evaluation Task for School-assessed Coursework 3

2012 Applications Analysis Task on Integration for Outcomes 1, 2 & 3

Recommended writing time*: 120 minutes Total number of marks available: 40 marks

TASK BOOK

© TSSM 2012 Page 1 of 9

^{*} The recommended writing time is a guide to the time students should take to complete this task. Teachers may wish to alter this time and can do so at their own discretion.

Conditions and restrictions

- Students are permitted to bring into the room for this task: pens, pencils, highlighters, erasers, sharpeners and rulers, bound summary booklet, approved CAS calculator.
- Students are NOT permitted to bring into the room for this task: blank sheets of paper and/or white out liquid/tape.

Materials supplied

• Question and answer book of 9 pages.

Instructions

- Print your name in the space provided on the top of the front page.
- All written responses must be in English.
- Show appropriate scales on the axes provided when sketching graphs.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic communication devices into the room for this task.

Any question worth more than 1 mark, relevant working must be shown.

© TSSM 2012 Page 2 of 9

Question 1

Th	e rate of change of the velocity of a car is given by:	
	$v'(t) = 9 - 3t + 2\sin t, t \ge 0$	
a.	Use calculus to find the rule for $v(t)$ if the initial velocity is 1 ms ⁻¹ .	
		<u></u>
		
		
	3	marks
b.	At what time (correct to 3 decimal places) does the velocity become zero?	
		1 mark
c.	Use calculus to find the displacement of the car over the first 4 seconds. Give your a correct to 3 decimal places.	answer
		
	<u> </u>	marks
d.	What feature of the graph of $v(t)$ represents the quantity you found in part c .	
		1 mark

© TSSM 2012 Page 3 of 9

Total 8 marks

Question 2

The graph of $f(x) = x^2 \ln x$ is shown above.

a. Find the derivative of $x^3 \ln x$ and hence use calculus to evaluate $\int_a^2 x^2 \ln x \, dx$ where a is the value of the

x-intercept of f(x). Give your answer as an exact value.

7 marks

b.	Why is it impossible to use calculus to find the exact area bounded by $f(x)$ and the x -axis, between $x = 0$ and $x = 1$? How could an approximation to this area be found while still using calculus?
	2 marks Total 9 marks
Qι	nestion 3
a.	Use CAS to find the exact indefinite integral of $e^{-x} \left(\frac{1}{x} - \ln 5x \right)$.
	2 marks
b.	What other information is required to correctly find the area bounded by the graph of
	$y = e^{-x} \left(\frac{1}{x} - \ln 5x \right)$, the x-axis and the lines $x = 0.5$ and $x = 1.5$?
	1 mark
c.	Find this information correct to 4 decimal places.
	1 mark
d.	Write out the integral which needs to be evaluated to find the area defined in part b .
	2 montes
	2 marks
e.	Hence find the required area correct to 3 decimal places.
	1 marks

© TSSM 2012 Page 5 of 9

Question 4

A new building is being designed and one of the walls can be modelled by the graph below.

The base of the wall is the *x*-axis and the top of the wall is represented by the function

$$h(x) = \frac{1}{3x+1} + e^{-0.1x} + \frac{(2x-1)^2}{5}$$
, $0 \le x \le 3$ where x and h are in metres.

The section of the wall between x = 1 and x = 3 is to be constructed of concrete 0.25 m thick.

a. Use the table function on your calculator to fill in the table below. Write in the values of f(x) correct to 4 decimal places.

х	f(x)
1.0	
1.2	
1.4	
1.6	
1.8	
2.0	
2.2	
2.4	
2.6	
2.8	
3.0	

2 marks

i. Lower rectangles 2 marks ii. Upper rectangles 2 marks c. Use the two values found in part b. to calculate a better estimate of the amount of concrete required. 1 mark d. Use calculus to find the exact volume of concrete required.	Estimate the volume of concrete required (correct to 3 decimal places) to construct this section of the wall by dividing the required region of the wall into rectangles of width (m and finding the area of the:	
ii. Upper rectangles 2 marks c. Use the two values found in part b. to calculate a better estimate of the amount of concrete required.		
ii. Upper rectangles 2 marks c. Use the two values found in part b. to calculate a better estimate of the amount of concrete required.		
ii. Upper rectangles 2 marks c. Use the two values found in part b. to calculate a better estimate of the amount of concrete required.		
2 marks c. Use the two values found in part b. to calculate a better estimate of the amount of concrete required. 1 mark	2 m	 arks
c. Use the two values found in part b. to calculate a better estimate of the amount of concrete required. 1 mark	. Upper rectangles	
c. Use the two values found in part b. to calculate a better estimate of the amount of concrete required. 1 mark		
required. 1 mark	2 m	 arks
		rete
d. Use calculus to find the exact volume of concrete required.	1 n	— nark
	Use calculus to find the exact volume of concrete required.	
4 marks	4 m	 arks

© TSSM 2012 Page 7 of 9

Total 11 marks

Question 5

The graphs of $f(x) = -\sqrt{3}\cos 2x$ and $g(x) = \sin 2x$ are shown on the set of axes below.

a. Find the exact x-coordinate of the intersection of y = f(x) and y = g(x) for $0 \le x \le \frac{\pi}{2}$.

1 mark

© TSSM 2012 Page 8 of 9

b.	Use calculus to find the area enclosed by $y = f(x)$, $y = g(x)$ and the lines
	$x = 0$ and $x = \frac{\pi}{2}$
	4 marks

END TASK BOOK

Total 5 marks

© TSSM 2012 Page 9 of 9