Student Name:	

MATHEMATICAL METHODS (CAS)

Unit 3 Targeted Evaluation Task for School-assessed Coursework 2

2012 Test (multiple choice, short answer, extended response) on Differentiation for Outcomes 1 & 3

Recommended writing time*: 60 minutes Total number of marks available: 40 marks

TASK BOOK

© TSSM 2012 Page 1 of 10

^{*} The recommended writing time is a guide to the time students should take to complete this task. Teachers may wish to alter this time and can do so at their own discretion.

Conditions and restrictions

- Students are permitted to bring into the room for this task: pens, pencils, highlighters, erasers, sharpeners and rulers, an approved CAS calculator.
- Students are NOT permitted to bring into the room for this task: blank sheets of paper and/or white out liquid/tape.
- A Calculator may be used for Sections 2 and 3 Multiple Choice and Analysis Task Questions
- No calculator is permitted to be used in Section 1 –Short Answer Questions

Materials supplied

• Question and answer book of 10 pages.

Instructions

- Print your name in the space provided on the top of the front page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic communication devices into the room for this task.

For any question worth more than 1 mark, relevant working must be shown.

© TSSM 2012 Page 2 of 10

SECTION 1- Short-answer Questions

Instructions for Section 1

For any question worth more than 1 mark, relevant working must be shown.

_	nestion 1	
	onsider the function $f(x) = 2x^3 + x^2 - 4x$. Find the derivative function, $f'(x)$.	
		1 mark
b.	Find the x-coordinates of the maximum and minimum turning points of $y = f(x)$.	
		2 marks
c.	Describe, in terms of x , the region or regions where $f(x)$ is increasing.	
		1 mark
Qı	uestion 2	
	r the graph of $y = xe^{-2x}$ find:	
a.	The gradient at $x = 1$.	
		2 marks
b.	The gradient of the normal to the graph at $x = 1$.	
		 1 mark

© TSSM 2012 Page 3 of 10

c. The equation of the normal to the graph at $x = 1$.
2 mar
Question 3
The displacement of a car, in metres, is given by the function $f(t) = \frac{t^2}{3} + \sin\left(\frac{t}{8}\right)$, where t is
in seconds. Give your answers in this question correct to 3 decimal places.
a. Use calculus to find the instantaneous velocity of the car at $t = 5$ s
2 mar
b. Find the average velocity of the car between $t = 5$ s and $t = 10$ s.
Question 4 Find, in terms of a, the minimum value of $y = ax^2 - 4ax + 20$.
2 mar

© TSSM 2012 Page 4 of 10

Section 2: Multiple Choice Questions

Question 1

The gradient of the graph of y = f(x) at x = a is given by:

A.
$$\frac{f'(a)}{f(a)}$$

B.
$$f(a) - f'(a)$$

C. The gradient of the tangent to
$$y = f(x)$$
 at $x = a$

D.
$$\lim_{h\to 0} f(a+h) - f(a)$$

E.
$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{f(h)}$$

Question 2

$$\lim_{x \to 1} \frac{(3x+1)(x-1)}{x^2 e^x - x e^x}$$
 is

A.
$$4e^{-1}$$

Question 3

 $\frac{3}{x}$ could **not** be the derivative of which one of the following expressions?

A.
$$3\log_e(2x) + 2$$

B.
$$\log_e(3x)$$

$$\mathbf{C.} \ \frac{\log_e(x^9)}{3}$$

D.
$$\log_e(4x^3) - 1$$

$$\mathbf{E}_{\bullet} - \log_e \left(\frac{1}{x^3} \right)$$

Question 4

If
$$y = \frac{e^{3x}}{x^2}$$
 then $\frac{dy}{dx} =$

A.
$$3x^2e^{3x} + 2xe^{3x}$$

B.
$$\frac{3e^{3x}}{2x}$$

C.
$$\frac{3e^{3x}-2x}{x^4}$$

D.
$$\frac{3x^2e^{3x} + 2xe^{3x}}{x^4}$$

E.
$$\frac{e^{3x}(3x-2)}{x^3}$$

Question 5

If
$$f(x) = 6\sqrt{3-x^2}$$
 then $f'(x) =$

A.
$$6\sqrt{3-2x}$$

B.
$$-12x\sqrt{3-x^2}$$

C.
$$\frac{-12x}{\sqrt{3-x^2}}$$

D.
$$\frac{-6x}{\sqrt{3-x^2}}$$

E.
$$\frac{6}{\sqrt{3-x^2}}$$

Question 6

The equation of the tangent of the graph of $y = 5x^2 - 8x + 2$ at x = 1 is:

A.
$$y = -3x + 2$$

B.
$$y = 2x + 2$$

C.
$$y = 3x + 2$$

D.
$$y = 2x - 3$$

E.
$$y = 2x - 1$$

Question 7

If a quartic function has a maximum turning point at x = -2 and a stationary point of inflection at x = 3 then:

- **A.** f(x) is increasing for $\{x: x < -2\}$ and decreasing for $\{x: x > -2\}$
- **B.** The only region where f(x) is decreasing is $\{x: -2 < x < 3\}$.
- C. f(x) is increasing for $\{x: x < -2\}$ and decreasing for $\{x: -2 < x < 3\} \cup \{x: x > 3\}$.
- **D.** f(x) is decreasing for $\{x: x < -2\}$ and increasing for $\{x: -2 < x < 3\} \cup \{x: x > 3\}$.
- **E.** f'(x) = 0 at x = -2 only.

Question 8

The derivative of $x^2 \cos 4x$ is:

- **A.** $2x\cos 4x + 4x^2\sin 4x$
- **B.** $2x(\cos 4x 2x\sin 4x)$
- C. $2x(\cos 4x x\cos 4)$
- **D.** $2x\cos 4x$
- **E.** $-8x\sin 4x$

Questions 9 and 10 refer to the following information

Consider the graph of $f(x) = 2xe^{-0.5x} \sin 2x$.

Question 9

The gradient of the graph when x = 0.4 is closest to:

- **A.** 0.009
- **B.** 0.041
- **C.** 0.470
- **D.** 1.852
- **E.** 3.464

Question 10

The coordinates of the second local minimum to the right of the y-axis are:

- **A.** (0.926, 1.120)
- **B.** (2.338, -1.452)
- **C.** (3.142, 0)
- **D.** 3.867, 1.111)
- **E.** (5.420, -0.713)

© TSSM 2012 Page 7 of 10

SECTION 3 - Analysis Questions

Instructions for Section 3

For any question worth more than 1 mark, relevant working must be shown.

Question 1

A water trough is in the shape of a semi-cylinder with length, l, and radius, r, as shown below.

- **a.** If the volume of the trough is 62500π cm³,
 - **i.** Find the length of the trough, l, in terms of r.

ii.	Find the external surface of the trough in terms of r .	1 mark
iii.	Find the exact value of r for which the surface area is a minimum.	2 marks
		2 marks

© TSSM 2012 Page 8 of 10

iv.	Find the minimum external surface area correct to the nearest cm ² .	
		1 mark
v.	Find the magnitude of the rate of change of the external area with respect t when $l = 75$ cm, correct to 2 decimal places	o the radius
		2 marks
b. If i.	The external surface area is 20000 cm^2 , Find the length of the trough, l , in terms of r .	
		1 mark
ii.	Find the volume of the trough in terms of r .	
		2 marks
iii.	Find the maximum value that r can take, correct to 2 decimal places.	
		 1 mark

© TSSM 2012 Page 9 of 10

iv.	v. Find the exact value of r for which the volume is a maximum.	
		2 marks
v.	Find the maximum volume correct to the nearest cm ³ .	
		 1 mark

END OF TASK BOOK

© TSSM 2012 Page 10 of 10