Student Name:	

MATHEMATICAL METHODS (CAS)

Unit 3 Targeted Evaluation Task for School-assessed Coursework 1

2012 Test (multiple choice, short answer, extended response) on Functions for Outcomes 1 & 3

Recommended writing time*: 60 minutes Total number of marks available: 40 marks

TASK BOOK

© TSSM 2012 Page 1 of 11

^{*} The recommended writing time is a guide to the time students should take to complete this task. Teachers may wish to alter this time and can do so at their own discretion.

Conditions and restrictions

- Students are permitted to bring into the room for this task: pens, pencils, highlighters, erasers, sharpeners and rulers, an approved CAS calculator.
- Students are NOT permitted to bring into the room for this task: blank sheets of paper and/or white out liquid/tape.
- An approved CAS calculator may be used for sections 2 and 3 Multiple Choice and Analysis Task Questions
- No calculator is permitted for use in section 1 –Short Answer Questions

Materials supplied

• Question and answer book of 11 pages.

Instructions

- Print your name in the space provided on the top of the front page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic communication devices into the room for this task.

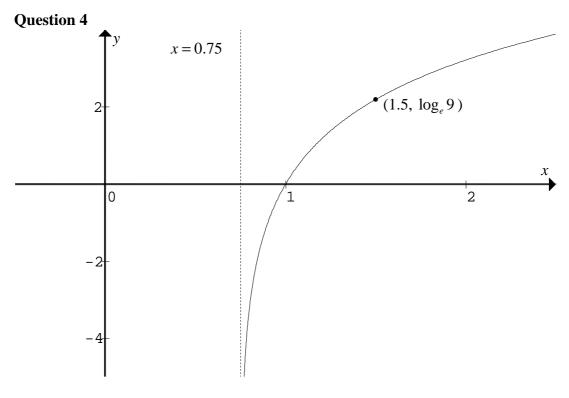
© TSSM 2012 Page 2 of 11

SECTION 1- Short-answer Questions

Instructions for Section 1

For any question worth more than 1 mark, relevant working must be shown.

A	4
Question	
Oucsuon	_


_	
a.	Describe the transformations required to transform the graph of $y = \sin\left(x - \frac{\pi}{6}\right)$ to the
	graph of $y = 4\sin 2\left(x - \frac{2\pi}{3}\right) + 5$.
	2 marks
b.	Find the exact solutions of $4\sin 2\left(x - \frac{2\pi}{3}\right) + 5 = 7$ over the domain $[0, \pi]$

4 marks

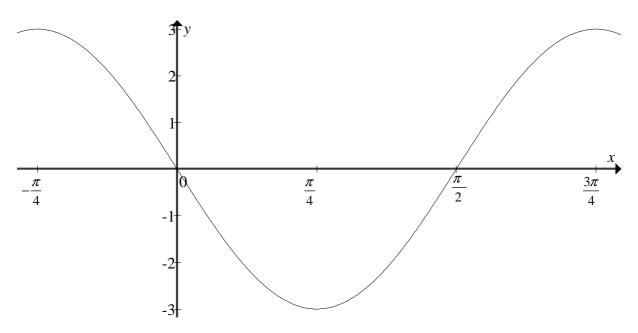
© TSSM 2012 Page 3 of 11

Question 2	
Show that $2\log_a 2x + \log_a 4x - 5\log_a x = -2\log_a \left(\frac{x}{4}\right)$	
(4)	
	2 marks
Question 3	
Find the exact x-intercepts of the graph of $y = 2x^4 + 5x^3 + x^2$.	
	······································
	3 marks

© TSSM 2012 Page 4 of 11

A graph of a function of the form $f(x) = a \log_e(bx + c)$ is shown above. The graph has a vertical asymptote at x = 0.75, an x-intercept of 1 and passes through the point (1.5, $\log_e 9$).

a.	Find the values of b and c .
	3 mark
b.	Find the value of a.


© TSSM 2012 Page 5 of 11

1 mark

Section 2: Multiple Choice Questions

Question 1

The equation of the following graph could be:

$$\mathbf{A.} \quad y = -3\sin x$$

B.
$$y = -\frac{\pi}{2}\sin 3x$$

C.
$$y = 3\sin\left(x - \frac{\pi}{2}\right)$$

$$\mathbf{D.} \quad y = 3\cos 2\left(x + \frac{\pi}{4}\right)$$

$$\mathbf{E.} \quad y = 3\cos 2\left(x - \frac{\pi}{4}\right)$$

Question 2

Which of the following functions **does not** have an inverse function?

A.
$$f(x) = 3x - 4, x \in R$$

B.
$$f(x) = (x+1)^2 - 2, x \le 0$$

$$\mathbf{C.} \quad f(x) = \cos\left(\frac{x}{2}\right), \ 0 \le x \le 2\pi$$

D.
$$f(x) = 2e^{-3x}, x \ge 0$$

E.
$$f(x) = x^3, x \in R$$

© TSSM 2012

Page 6 of 11

The following information relates to Questions 3 and 4.

Given $f(x) = \sqrt{x-4}$ and $g(x) = x^2$.

Question 3

g[f(7)] =

- **A.** $\sqrt{3}$
- **B.** $\sqrt{45}$
- **C.** 49
- **D.** 9
- **E.** 3

Question 4

The maximal implied domain of f[g(x)] is:

- **A.** $\{x: x \le -4\} \cup \{x: x \ge 4\}$
- **B.** $\{x: x \ge 2\}$
- C. $\{x: x \le -2\} \cup \{x: x \ge 2\}$
- **D.** $\{x: x \ge 4\}$
- **E.** $\{x : x \ge 0\}$

Question 5

The rule for the inverse function of $f(x) = \sqrt{x+5} - 2$ would be:

- **A.** $f^{-1}(x) = (x-2)^2 5$
- **B.** $f^{-1}(x) = (x+5)^2 2$
- C. $f^{-1}(x) = (x+2)^2 5$
- **D.** $f^{-1}(x) = (x-5)^2 + 2$
- **E.** $f^{-1}(x) = -2(x+5)^2$

Question 6

If $f(x) = (x-2)^2 + 3$, $0 \le x \le 5$, the domain of $f^{-1}(x)$ would be:

- **A.** [0, 5]
- **B.** [2, 3]
- **C.** [3, 5]
- **D.** [3, 12]
- **E.** [7, 12]

Question 7

The x-intercept of $y = \frac{1}{2} \log_e(x-1) + 3$ is:

A.
$$e^{-6} + 1$$

B.
$$e^{-\frac{3}{2}} + 1$$

D.
$$2e^{-\frac{1}{3}}$$

E.
$$2e^{-3}+1$$

Question 8

If the function $f(x) = \log_e(x+3)$ is dilated away from the *x*-axis, which of the following would remain unchanged?

- **A.** The *x*-intercept only
- **B.** The *y*-intercept only
- **C.** The asymptote only
- **D.** The *x*-intercept and the *y*-intercept
- **E.** The *x*-intercept and the asymptote

Question 9

If the graph of $y = e^x + 3$ is

- Reflected about the x-axis
- Translated -2 units parallel to the *x*-axis
- Translated 1 unit parallel to the y-axis

in that order, the equation of the resulting graph would be:

A.
$$y = e^{-(x-2)} + 4$$

B.
$$y = -e^{(x+2)} - 2$$

C.
$$y = -e^{(x+2)} + 4$$

D.
$$v = -e^{(x-1)} - 5$$

E.
$$y = e^{-(x-1)} + 1$$

Ouestion 10

The graph of y = |(x-2)(x-4)| + 3, $0 \le x \le 5$ will have:

- **A.** A minimum value at (3, -1)
- **B.** A minimum value at (3, 2)
- **C.** A range of [0, 1]
- **D.** Minimum values at (2, 3) and (4, 3) and a range of [3, 4]
- **E.** Minimum values at (2, 3) and (4, 3) and a range of [3, 11]

SECTION 3- Analysis Questions

Instructions for Section 3

For any question worth more than 1 mark, relevant working must be shown.

Ouestion	1
Question	_

f_1	a population of bacteria is increasing according to the function $(t) = Ae^{kt}$, $t \ge 0$, where t is the time in hours after 9 am. It 11 am there are 5000 bacteria and at 2 pm there are 12500 bacteria.
i.	Find the value of <i>k</i> correct to 4 decimal places.
ii.	2 marks Use your value of k above to find the value of A correct to the nearest whole number.
	1 mark
iii.	Using your values for A and k , find the time, to the nearest minute, when the bacteria population will be 30000.
	2 marks

© TSSM 2012 Page 9 of 11

b. A second bacteria population grows according to the function $f_2(t) = Be^{nt}$, $t \ge 0$, where <i>t</i> is the time in hours after 9 am.		
	i. Write down the value of B if, at 9 am, the number of bacteria in this population third of number of bacteria in the population in part a.	is one
		1 mark
i	i. Write down the value of n if this population has the same initial population as the population in part \mathbf{a} , but grows at twice the rate of the population in part \mathbf{a} .	ne
		1 mark
c.	Two other populations of bacteria are growing according to the functions $g(x) = 2e^{2t} + 5$, $t \ge 0$ and	
	$h(x) = 11e^t$, $t \ge 0$ Find the exact time (or times), t , when the two population are equal.	
		5 marks

© TSSM 2012 Page 10 of 11

eria start
1 mark
alue.
 2 marks

END OF TASK BOOK

© TSSM 2012 Page 11 of 11