

2012 Trial Examination

/		
1		
¦		
) 		
i	THIS BOX IS FOR ILLUSTRATIVE PURPOSES ONLY	
i		
ì		
İ		
ì		
\		

	STUDEN	NUMBE	K			_	Letter
Figures							
Words							

MATHEMATICAL METHODS (CAS)

Units 3 & 4 – Written examination 1

Reading time: 15 minutes
Writing time: 1 hour

QUESTION & ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
9	9	40
		Total 40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers
- Students are NOT permitted to bring into the examination room: notes of any kind, blank sheets of paper, white out liquid/tape or a calculator of any type.

Materials supplied

- Question and answer book of 9 pages.
- Working space is provided throughout the book.

Instructions

- Print your name in the space provided on the top of this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic communication devices into the examination room.

© TSSM 2012 Page 1 of 9

Instructions

Answer all questions in the spaces provided.

A decimal approximation will not be accepted if an exact answer is required to a question. In questions where more than one mark is available, appropriate working must be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Orrection	1
Ouestion	1

Let $f(x) = \log_e(x+3)$ and $g(x) = x^4 + 2$.

a.	Write down a rule for $f(g(x))$	
		2 mark
b.	Find the derivative of $f(g(x))$.	
		2 marks
c.	Hence find $f'(g(-2))$	
		 1 mark

© TSSM 2012 Page 2 of 9

Qu	estion 2
a.	Find a given that $\int_0^a (5x - 10) dx = 0$, $a \neq 0$.
	2 marks
b.	Find the area between the curve $y = cos(\frac{x}{2})$, the x-axis and the lines $x = 0$ and $x = \pi$.

2 marks

TURN OVER

© TSSM 2012 Page 3 of 9

Question 3

Consider the function $f: R \to R$, $f(x) = -4e^{\frac{x}{2}} + 1$.

a.	Write down a rule for $f^{-1}(x)$.	
		2
		3 marks
b.	Find the domain of $f^{-1}(x)$.	
		1 mark
c.	Solve for $f^{-1}(x) = 0$.	

2 marks

Question 4

Given $f: \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to R, f(x) = 3\cos 2x$

a. Find the exact values of x for which $f(x) = -\frac{3\sqrt{3}}{2}$.

2 marks

b. Find the exact values of x for which f'(x) = 0.

2 marks

c. Write down the interval over which the rate of change is negative.

1 mark

TURN OVER

Λ	estion	_
()11	ection	•

A transformation is defined through the matrix equation T(X+B)=X' where

T =	$\begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$. Find the equation of the image of $y = x + 2 - 3$ under this
traı	sformation.
	4 marks
Āŗ	estion 6 ile of sand forms a right circular cone. Sand is being added at a constant rate of 2m ³ /s. It is growing pile is shaped such that the radius of its base is equal to half of its height.
a.	Find the volume of the pile when the height of the pile is 6 m.
b.	At what rate is the height of the pile increasing when the pile is 6 m high?

© TSSM 2012 Page 6 of 9

2 marks

Use t	tion 7 he approximation formula $f(x + h) \approx f(x) + hf'(x)$ for a small positive value of h , to an approximate value for $\sqrt{24.95}$
	3 marks
The t	tion 8 ime taken to complete a task (in hours) is a random variable X with probability density ion: $ = \begin{cases} k(x-1)(4-x) & 1 < x < 4 \\ 0 & \text{elsewhere} \end{cases} $
wher	e k is a constant, find
a. t	he value of k.
-	
-	3 marks Question 8 - continued

© TSSM 2012 Page 7 of 9

TURN OVER

b.	Pr(X > 3)
0	2 marks
Sue	e makes handmade soaps. The mass of soaps X is a normally distributed random variable with an 220 grams and a standard deviation of 10 grams and let Z be the random variable with the adard normal distribution. Find
a.	$Pr(m < X < 240) \approx 0.95$, find the value of m .
	1 mark
b.	Sue randomly selects a handmade soap from a box containing several soaps. What is the probability that the soap's mass is less than 210 grams? (Use $Pr(Z > 1) = 0.16$
	2 marks

Question 9 - continued

© TSSM 2012 Page 8 of 9

c.	Sue randomly selects a handmade soap that had a mass more than the mean mass. What is the probability that its mass is more than 230 grams?
	2 marks

END OF QUESTION AND ANSWER BOOK

© TSSM 2012 Page 9 of 9