

Trial Examination 2012

VCE Mathematical Methods (CAS) Units 3 & 4

Written Examination 1

Suggested Solutions

Question 1

a. Using the product rule, i.e.
$$u = x$$
, $\frac{du}{dx} = 1$, $v = \sin^2(x)$ and $\frac{dv}{dx} = 2\sin(x)\cos(x)$.

Hence
$$h'(x) = 2x\sin(x)\cos(x) + \sin^2(x)$$
.

$$\sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \text{ and } \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

$$h'\left(\frac{\pi}{6}\right) = 2 \times \frac{\pi}{6} \times \frac{1}{2} \times \frac{\sqrt{3}}{2} + \left(\frac{1}{2}\right)^2$$

$$h'\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}\pi}{12} + \frac{1}{4}$$

Question 2

$$\int_{\sqrt{2}}^{2} \frac{1}{3-x} dx = \left[-\log_{e} |3-x| \right]_{\sqrt{2}}^{2}$$

$$= -\log_{e}(1) + \log_{e}(3-\sqrt{2})$$

$$= \log_{e}(3-\sqrt{2})$$
A1

So,
$$\log_e(3 - \sqrt{2}) = \log_e(k)$$
 and hence $k = 3 - \sqrt{2}$.

Question 3

a.
$$f(g(x)) = \frac{1}{(x+2)^2}$$

 $\frac{1}{(x+2)^2} = 4$ and so $(x+2)^2 = \frac{1}{4}$.
 $x+2=\pm\frac{1}{2}$

Hence
$$x = -\frac{5}{2}, -\frac{3}{2}$$
.

b. Interchanging x and y we obtain $x = \frac{1}{y+2}$.

Solving for y we obtain
$$y = \frac{1}{x} - 2$$
, i.e. $g^{-1}(x) = \frac{1}{x} - 2$.

The domain of g^{-1} is $R \setminus \{0\}$ and the range of g^{-1} is $R \setminus \{-2\}$.

Question 4

Using
$$\cos\left(\pm\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$
.

More generally,
$$\cos\left(\pm\frac{\pi}{4} + 2k\pi\right) = \frac{1}{\sqrt{2}}$$
. M1

Since
$$\cos\left(\frac{x}{2} + \frac{\pi}{3}\right) = \frac{1}{\sqrt{2}}$$

$$\frac{x}{2} + \frac{\pi}{3} = \pm \frac{\pi}{4} + 2k\pi$$

So
$$x = -\frac{2\pi}{3} \pm \frac{\pi}{2} + 4k\pi$$

Substituting
$$k = 1$$
 gives $x = \frac{17\pi}{6}$.

Question 5

a.

Attempting to express
$$y = \frac{2x-1}{x+1}$$
 as $y = 2 - \frac{3}{x+1}$. M1

Asymptotes
$$x = -1$$
, $y = 2$.

Axes intercepts
$$(0,-1)$$
, $\left(\frac{1}{2},0\right)$.

b. Referring to the graph,
$$0 < y < 2$$
 for $x > \frac{1}{2}$

Question 6

From
$$\int_0^1 (ax+b)dx = 1$$
 we obtain $\left[\frac{ax^2}{2} + bx\right]_0^1 = 1$.

Hence
$$\frac{a}{2} + b = 1$$
. (1)

From
$$\int_0^1 x(ax+b)dx = \frac{7}{12}$$
 we obtain $\left[\frac{ax^3}{3} + \frac{bx^2}{2}\right]_0^1 = \frac{7}{12}$.

Hence
$$\frac{a}{3} + \frac{b}{2} = \frac{7}{12}$$
. (2)

Attempting elimination or substitution, for example
$$2 \times (2) - (1)$$
 gives $\frac{a}{6} = \frac{1}{6}$. M1

Hence
$$a = 1$$
 and $b = \frac{1}{2}$.

Question 7

Using
$$Pr(A \cap B) = Pr(A|B) \times Pr(B)$$
 we obtain $Pr(A \cap B) = \frac{3}{5} \times \frac{1}{5}$ i.e. $Pr(A \cap B) = \frac{3}{25}$.

Now
$$\Pr(B|A) = \frac{\Pr(A \cap B)}{\Pr(A)}$$
 and so $\Pr(B|A) = \frac{\frac{3}{25}}{\frac{2}{5}}$, i.e. $\Pr(B|A) = \frac{3}{10}$. M1 A1

Question 8

Given that
$$\Sigma \Pr(X = x) = 1$$
 we obtain $5p^2 + 4p - 1 = 0$.

Factorising the LHS we obtain (p + 1)(5p - 1) = 0.

We reject
$$p = -1$$
 since $0 , and so $p = \frac{1}{5}$.$

M1

Question 9

a. Given $y = 4 - e^{2x}$ we obtain $\frac{dy}{dx} = -2e^{2x}$.

At
$$x = \log_e(2)$$
, $\frac{dy}{dx} = -2e^{2\log_e(2)}$ i.e. $\frac{dy}{dx} = -8$.

So the gradient of the normal is $\frac{1}{8}$.

Using $y - y_1 = m(x - x_1)$ we obtain $y = \frac{1}{8}(x - \log_e(2))$.

Hence the equation of the normal is $y = \frac{1}{8}x - \frac{1}{8}\log_e(2)$.

b. The area bounded by the curve and the two axes is given by

$$\int_{0}^{\log_{e}(2)} (4 - e^{2x}) dx = \left[4x - \frac{1}{2} e^{2x} \right]_{0}^{\log_{e}(2)}$$

$$= \left[4\log_{e}(2) - \frac{1}{2} e^{2\log_{e}(2)} \right] - \left[0 - \frac{1}{2} e^{0} \right]$$

$$= 4\log_{e}(2) - 2 + \frac{1}{2}$$

$$= 4\log_{e}(2) - \frac{3}{2}$$
M1

The area of the triangle bounded by the normal and the two axes can be calculated as follows:

When
$$x = 0$$
, $y = -\frac{1}{8}\log_e(2)$.

The area of the triangle is $\frac{1}{2} \times \frac{1}{8} \log_e(2) \times \log_e(2)$, i.e. $\frac{1}{16} (\log_e(2))^2$.

So the total area is
$$4\log_e(2) - \frac{3}{2} + \frac{1}{16}(\log_e(2))^2$$
 (square units). A1 A1

Question 10

a. Given
$$f(x) = x + \sqrt{x^2 + 1}$$
,

$$= x + (x^2 + 1)^{\frac{1}{2}}$$

$$f'(x) = 1 + \frac{1}{2}(2x)(x^2 + 1)^{-\frac{1}{2}}$$
 M1

$$f'(x) = 1 + \frac{x}{\sqrt{x^2 + 1}}$$

b. Given that
$$g(x) = \log_e(f(x))$$
, $g'(x) = \frac{f'(x)}{f(x)}$.

So,
$$g'(x) = \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}}$$

$$= \frac{\frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}}$$
A1

$$= \frac{\sqrt{x^2 + 1 + x}}{\sqrt{x^2 + 1}} \times \frac{1}{x + \sqrt{x^2 + 1}}$$
$$= \frac{1}{\sqrt{x^2 + 1}}$$

Hence
$$g'(x) = \frac{1}{\sqrt{x^2 + 1}}$$
.

c. As
$$g(x) = \log_e(f(x))$$
, $\int g'(x)dx = \log_e(f(x)) + c$.

So,
$$\int_{0}^{1} \frac{1}{\sqrt{x^2 + 1}} dx = \left[\log_e(x + \sqrt{x^2 + 1})\right]_{0}^{1}$$

$$= \log_e(1 + \sqrt{2})$$
A1