The Mathematical Association of Victoria

Trial Exam 2012

MATHEMATICAL METHODS (CAS)

WRITTEN EXAMINATION 1

STUDENT NAME	

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
11	11	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: notes of any kind, blank sheets of paper, white out liquid/tape or a calculator of any type.

Materials supplied

- Question and answer book of 9 pages, with a detachable sheet of miscellaneous formulas at the back
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the back of this book during reading time.
- Write your name in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

This page is blank

Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1

Let $g(x) = \cos(x)$ and $f(x) = \log_e(2x - 2)$.

a. State the maximal domain of f.

b. Find the rule for g(f(x)).

c. Find g'(f(x))f'(x).

2 marks

Question 2

Sketch the graph of $y = \left(\frac{1}{4}\right)^{x-1} - 1$ on the set of axes below. Clearly label any asymptotes with their equations and axes-intercepts with their coordinates.

3 marks

Question	3
Question	J

	ve the equation $2\log_e(x-2) - \log_e(x+1) = \log_e(2)$ for x .	
		3 marks
	estion 4 Differentiate $(x+2)\sqrt{(x-1)}$, giving your answer as a single fraction.	
		3 marks
b.	Hence, find an antiderivative of $\frac{x}{\sqrt{(x-1)}}$.	
		2 marks

Question 5

Find the area bounded by the curve of f with equation $f(x) = \frac{1}{2-4x}$, the y-axis and the line $y = 2$. Write	
your answer in the form $\frac{a - \log_e(b)}{b}$, where a and b are positive integers.	
	_
	_
5 mark	

Working Space

Question 6

If $h(x) = e^{(x-1)}$, show that $h(x+y) \times h(x-y) = (h(x))^2$.

2 marks

Question 7

On the axes provided, sketch the graph of the function $f:[-\pi,3\pi] \to R$ where $f(x)=\frac{1}{2}\sin\left(\frac{x}{2}\right)$. Label the endpoints with their coordinates.

2 marks

Ouestio	- O
Questio	па

Q C C	
Find the values of $a \in \left[0, \frac{2}{3}\right]$	for which $x = \frac{1}{6}$ is the solution to the equation $2\sin(3\pi(x-a)) = \sqrt{3}$.

3 marks

Question 9

If $X \sim \text{Bi}(5, 0.1)$, find Pr(X = 3).

2 marks

Question 10

The probability density function of a random variable X has a density function given by

$$f(x) = \begin{cases} |x-1| & 0 \le x \le 1\\ 0.1 & 1 < x \le a\\ 0 & \text{elsewhere} \end{cases}$$

1 mark

b. Find Pr(X > 0.5).

1 mark

c. Find Pr(X > 2 | X > 0.5).

2 marks

Question 11

The diagram represents two sails of a toy yacht, where triangle *ABC* and triangle *BCD* are the two sails. The length of *AC* is *a* metres and $\angle BAC = \theta^c$.

Also AB = 2BD and $\angle CBD = \angle CBA = \frac{\pi}{2}$.

a. Write BC and AD in terms of a and θ .

2 marks

).	Write the total sail area, $T \text{ m}^2$, in terms of a and θ .			
		1 mar		
	i. Find $\frac{dT}{d\theta}$.			
i	. Hence , find the maximum total sail area, when $a = 4 \text{ m}$.			

1+3=4 marks

MATHEMATICAL METHODS (CAS)

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

This page is blank

Mathematical Methods (CAS) Formulas

Mensuration

area of a trapezium: $\frac{1}{2}(a+b)h$ volume of a pyramid: $\frac{1}{3}Ah$

curved surface area of a cylinder: $2\pi rh$ volume of a sphere: $\frac{4}{3}\pi r^3$

volume of a cylinder: $\pi r^2 h$ area of a triangle: $\frac{1}{2}bc\sin A$

volume of a cone: $\frac{1}{3}\pi r^2 h$

Calculus

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$$

$$\int d \left(ax \right) = ax$$

$$\int ax \, dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$$

$$\frac{d}{dx}\left(\log_e(x)\right) = \frac{1}{x}$$

$$\int \frac{1}{x} dx = \log_e|x| + c$$

$$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$$

$$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$$

$$\frac{d}{dx}\left(\cos(ax)\right) = -a\sin(ax)$$

$$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$$

$$\frac{d}{dx} (\tan(ax)) = \frac{a}{\cos^2(ax)} = a \sec^2(ax)$$
product rule:
$$\frac{d}{dx} (uv) = u \frac{dv}{dx} + v \frac{du}{dx}$$
quotient rule:
$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

chain rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$ approximation: $f(x+h) \approx f(x) + hf'(x)$

Probability

$$Pr(A) = 1 - Pr(A')$$

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$
 transition matrices: $S_n = T^n \times S_0$

mean: $\mu = E(X)$ variance: $var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$

prob	ability distribution	mean	variance
discrete	$\Pr(X=x)=p(x)$	$\mu = \sum x p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$
continuous	$Pr(a < X < b) = \int_{a}^{b} f(x)dx$	$\mu = \int_{-\infty}^{\infty} x \ f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

END OF FORMULA SHEET