

SUPERVISOR TO ATTACH PROCESSING LABEL HERE

	STUDEN	Γ NUMBE	R				Letter
Figures							
Words							

MATHEMATICAL METHODS (CAS)

Written examination 1

Tuesday 8 November 2011

Reading time: 9.00 am to 9.15 am (15 minutes) Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: notes of any kind, blank sheets of paper, white out liquid/tape or a calculator of any type.

Materials supplied

- Question and answer book of 13 pages, with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your **student number** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

This page is blank

3

Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

A	4
Ouestion	_

Qu	estion 1	
a.	Differentiate $\sqrt{4-x}$ with respect to x .	
		l mark
b.	If $g(x) = x^2 \sin(2x)$, find $g'\left(\frac{\pi}{6}\right)$.	

nd an antiderivative of $\frac{1}{3x-4}$ with respect to x.	
	1 1
plve the equation $4^x - 15 \times 2^x = 16$ for x .	

One	estion	2
()116	estion	5

a.	State the range and period of the function	
	$h: R \to R, h(x) = 4 + 3\cos\left(\frac{\pi x}{2}\right).$	
		marks
b.	Solve the equation	
	$\sin\left(2x + \frac{\pi}{3}\right) = \frac{1}{2} \text{ for } x \in \left[0, \pi\right].$	

The probability distribution function for the continuous random variable X is given by

$$f(x) = \begin{cases} |3 - x| & if \quad 2 \le x \le 4\\ 0 & elsewhere \end{cases}$$

a.	Find $Pr(X < 3.5)$.	
b.	Find $Pr(X < 2.5 \mid X < 3.5)$.	2 mark

7

Consider the simultaneous linear equations

$$kx - 3y = k + 3$$
$$4x + (k + 7)y = 1$$

where k is a real constant.

Find the value of k for which there are infinitely many solutions.	
	3 1
Find the values of k for which there is a unique solution.	

A biased coin is tossed three times. The probability of a head from a toss of this
--

i.	three heads from the three tosses
ii.	two heads and a tail from the three tosses.
If th	1 + 1 = 2 marks the probability of obtaining three heads equals the probability of obtaining two heads and a tail, find p
	i. ii.

Two events, A and B, are such that $Pr(A) = \frac{3}{5}$ and $Pr(B) = \frac{1}{4}$.

If A' denotes the complement of A, calculate $Pr(A' \cap B)$ when

 $\mathbf{a.} \quad \Pr(A \cup B) = \frac{3}{4}$

2	marks

b. A and B are mutually exclusive.

1 mark

Question 9

Parts of the graphs of the functions

$$f: R \to R, f(x) = x^3 - ax$$
 $a > 0$

$$g: R \to R, g(x) = ax$$
 $a > 0$

are shown in the diagram below.

The graphs intersect when x = 0 and when x = m.

The area of the shaded region is 64.					
Find the value of a and the value of m .					

The figure shown represents a wire frame where ABCE is a convex quadrilateral. The point D is on line segment EC with AB = ED = 2 cm and BC = a cm, where a is a positive constant.

$$\angle BAE = \angle CEA = \frac{\pi}{2}$$

Let $\angle CBD = \theta$ where $0 < \theta < \frac{\pi}{2}$.

a. I	Find BD	and <i>CD</i>	in terms	of a	and	θ .
------	---------	---------------	----------	------	-----	------------

b.	Find the length, L cm, of the wire in the frame, including length BD , in terms of a and θ .

1 mark

	nce show that			
				2 n
		_		
Find the maximur	n value of L if	$a = 3\sqrt{5}$.		
Find the maximur	n value of L if	$a = 3\sqrt{5}$.		
Find the maximur	n value of L if	$a = 3\sqrt{5}.$		
Find the maximur	n value of <i>L</i> if	$a = 3\sqrt{5}$.		
Find the maximur	n value of L if	$a = 3\sqrt{5}.$		
Find the maximur	n value of L if	$a = 3\sqrt{5}.$		
Find the maximur	n value of L if	$a = 3\sqrt{5}$.		
Find the maximur	n value of L if	$a = 3\sqrt{5}$.		
Find the maximur	n value of L if	$a = 3\sqrt{5}$.		
Find the maximur	n value of L if	$a = 3\sqrt{5}$.		
Find the maximur	n value of L if	$a = 3\sqrt{5}$.		
Find the maximur	n value of L if	$a = 3\sqrt{5}$.		
Find the maximur	n value of L if	$a = 3\sqrt{5}$.		
Find the maximur	m value of L if	$a = 3\sqrt{5}$.		
Find the maximur	m value of L if	$a = 3\sqrt{5}$.		
Find the maximur	m value of L if	$a = 3\sqrt{5}$.		
Find the maximur	m value of L if	$a = 3\sqrt{5}$.		

1 mark

MATHEMATICAL METHODS (CAS)

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

This page is blank

Mathematical Methods (CAS) Formulas

Mensuration

area of a trapezium: $\frac{1}{2}(a+b)h$ volume of a pyramid: $\frac{1}{3}Ah$

curved surface area of a cylinder: $2\pi rh$ volume of a sphere: $\frac{4}{3}\pi r^3$

volume of a cylinder: $\pi r^2 h$ area of a triangle: $\frac{1}{2}bc\sin A$

volume of a cone: $\frac{1}{3}\pi r^2 h$

Calculus

$$\frac{d}{dx} \left(x^{n}\right) = nx^{n-1}$$

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$$

$$\frac{d}{dx} \left(e^{ax}\right) = ae^{ax}$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$$

$$\int \frac{1}{x} dx = \log_{e} |x| + c$$

$$\int \frac{1}{x} dx = \log_{e} |x| + c$$

$$\int \sin(ax) dx = -\frac{1}{a} \cos(ax) + c$$

$$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$$

$$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$$

product rule: $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$ quotient rule: $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

chain rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$ approximation: $f(x+h) \approx f(x) + hf'(x)$

Probability

$$Pr(A) = 1 - Pr(A')$$

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

 $\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$ transition matrices: $S_n = T^n \times S_0$

mean: $\mu = E(X)$ variance: $var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$

prob	ability distribution	mean	variance	
discrete	$\Pr(X=x)=p(x)$	$\mu = \sum x p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$	
continuous	$Pr(a < X < b) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} x \ f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$	