

Trial Examination 2010

VCE Mathematical Methods (CAS) Units 3 & 4

Written Examination 2

Formula Sheet

Directions to students

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

TEVMMU34EX2_FS_2010.FM

MATHEMATICAL METHODS (CAS) FORMULAS

Mensuration

area of a trapezium: $\frac{1}{2}(a+b)h$ volume of a pyramid: $\frac{1}{3}Ah$

curved surface area of a cylinder: $2\pi rh$ volume of a sphere: $\frac{4}{3}\pi r^3$

volume of a cylinder: $\pi r^2 h$ area of a triangle: $\frac{1}{2}bc\sin(A)$

volume of a cone: $\frac{1}{3}\pi r^2 h$

Calculus

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$$

$$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$$

$$\int \frac{1}{x} dx = \log_e|x| + c$$

$$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$$

$$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$$

$$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$$

$$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$$

$$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a\sec^2(ax)$$

product rule:
$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$
 quotient rule:
$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

chain rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ approximation: $f(x+h) \approx f(x) + hf'(x)$

Matrices

transition matrices: $S_n = T^n \times S_o$

Probability

$$Pr(A) = 1 - Pr(A')$$
 $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$

$$\Pr(A \mid B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$

mean: $\mu = E(X)$ variance: $Var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$

probability distribution		mean	variance	
discrete	$\Pr(X=x)=p(x)$	$\mu = \Sigma x p(x)$	$\sigma^2 = \Sigma (x - \mu)^2 p(x)$	
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x) \ dx$	$\mu = \int_{-\infty}^{\infty} x f(x) \ dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \ dx$	

END OF FORMULA SHEET