# **MATHEMATICAL METHODS (CAS)**

## Units 3 & 4 – Written examination 1



#### 2008 Trial Examination

Reading time: 15 minutes Writing time: 1 hour

## **QUESTION AND ANSWER BOOK**

#### Structure of book

| Number of questions | Number of questions to be answered | Number of<br>marks |
|---------------------|------------------------------------|--------------------|
| 12                  | 12                                 | 40                 |
|                     |                                    | Total 40           |

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.
- No calculator is permitted in this examination.

#### Materials supplied

• Question and answer book of 10 pages.

#### **Instructions**

- Print your name in the space provided on the top of this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic communication devices into the examination room.

This page is blank

#### Instructions

Answer all questions in the spaces provided.

A decimal approximation will not be accepted if an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working must be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

#### **Question 1**

**a.** State the transformations made to the graph of  $y = \frac{1}{x}$  in order to obtain the graph

$$y = -\frac{4}{x-3} - 2$$
.

\_\_\_\_\_

1 mark

**b.** Hence or otherwise, sketch  $y = -\frac{4}{x-3} - 2$  and label any asymptote(s) and axial intercept(s).



3 marks

**TURN OVER** 

|    | estion 2<br>ve $2^{2x} - 2^{x+3} + 2^4 = 0$ .                            |         |
|----|--------------------------------------------------------------------------|---------|
|    |                                                                          |         |
|    |                                                                          |         |
|    |                                                                          |         |
|    |                                                                          |         |
|    |                                                                          | 3 marks |
|    | estion 3  If $f(x) = 1 + 2e^{x-1}$ find the inverse function $f^{-1}(x)$ |         |
| а. | If $f(x) = 1 - 2e^{x-1}$ , find the inverse function $f^{-1}(x)$ .       |         |
|    |                                                                          |         |
|    |                                                                          |         |
|    |                                                                          |         |
|    |                                                                          |         |
|    |                                                                          | 3 marks |
| b. | State the domain and range of $f^{-1}(x)$ .                              |         |
|    |                                                                          |         |
|    |                                                                          | 1 mark  |

## **Question 4**

Two functions are defined as:  $f:(-5,4] \to R$ ,  $f(x) = 3\sqrt{x+5} - 4$  and

 $g:[-3,4] \to R, g(x) = \frac{x}{3}(x+3)(x-4)$ . The graphs of these functions are shown below.



**a.** On the same set of axes, sketch the graph of h(x) = f(x).g(x).

2 marks

**b.** State the domain of h(x).

1 mark

**TURN OVER** 

| Λ. |         | _ |
|----|---------|---|
| () | uestion | • |

| Qu | lestion 5 $(3x^2-2)^4$                                                   |        |
|----|--------------------------------------------------------------------------|--------|
| a. | If $f(x) = \frac{(3x^2 - 2)^4}{\cos(x)}$ , find $f'(x)$ .                |        |
|    |                                                                          |        |
|    |                                                                          |        |
|    | ,                                                                        |        |
|    |                                                                          |        |
|    |                                                                          |        |
|    |                                                                          |        |
|    |                                                                          |        |
|    |                                                                          | 1 mar  |
|    |                                                                          | i man  |
| b. | Find the derivative of $y = x^2 e^{2x}$ .                                |        |
|    |                                                                          |        |
|    |                                                                          |        |
|    |                                                                          | 1 marl |
|    |                                                                          |        |
| c. | Hence find $\int (xe^{2x} + x^2e^{2x} + 1)dx$ .                          |        |
|    |                                                                          |        |
|    |                                                                          |        |
|    |                                                                          | 1 mari |
|    |                                                                          | i man  |
|    | nestion 6                                                                |        |
| So | lve the equation $\sqrt{3}\sin(3x) = \cos(3x)$ for $x \in [-\pi, \pi]$ . |        |
|    |                                                                          |        |
|    |                                                                          |        |
|    |                                                                          |        |
|    |                                                                          |        |
|    |                                                                          |        |

3 marks

**Question 7** 

**a.** Sketch the graph of  $y = 2 \tan \left( \frac{1}{2} \left( x - \frac{\pi}{2} \right) \right)$  for  $x \in \left( -\frac{\pi}{2}, \frac{7\pi}{2} \right)$ . Label the coordinates of all axial intercepts.

x

3 marks

**b.** On the same set of axes, sketch  $y = \left| 2 \tan \left( \frac{1}{2} \left( x - \frac{\pi}{2} \right) \right) \right|$  for  $x \in \left( -\frac{\pi}{2}, \frac{7\pi}{2} \right)$ .

1 mark

**TURN OVER** 

| $\boldsymbol{\cap}$ |         | Ω |
|---------------------|---------|---|
|                     | uestion | × |
| <b>、</b> ,          | ucsuvii | " |

Find the equation of the tangent to the curve  $y = 3\ln(2x - 3)$  at the point where x = 3

3 marks

## **Question 9**

Find the area between the graph of  $y = (x+1)^2$ , the right of the y axis and the line y = 9



3 marks

## **Question 10**

A discrete probability distribution is given by the following table

| x    | 0   | 1 | 2 | 3   | 4   |
|------|-----|---|---|-----|-----|
| p(x) | 0.2 | а | b | 0.2 | 0.2 |

| ì. | If $E(X) = 2.1$ , find the values of a and b. |        |
|----|-----------------------------------------------|--------|
|    |                                               |        |
|    |                                               |        |
|    |                                               |        |
|    |                                               |        |
|    |                                               | 2 mark |
| ). | Find $E(2X + 1)$ .                            |        |
|    |                                               |        |
|    |                                               |        |

**TURN OVER** 

1 mark

## **Question 11**

Tests have shown that if a cat has milk on a particular day, there's a 90% chance that it will choose pellets on the next day. But if a cat has pellets on a particular day, there is an 80% chance that it will choose milk on the next day.

| a.  | If Jim's cat had milk on Monday, find the probability that it will have pellets on Thursday. Give answer as a <b>fraction</b> . |         |
|-----|---------------------------------------------------------------------------------------------------------------------------------|---------|
|     |                                                                                                                                 |         |
|     |                                                                                                                                 |         |
|     |                                                                                                                                 |         |
|     |                                                                                                                                 |         |
|     |                                                                                                                                 |         |
|     |                                                                                                                                 |         |
|     |                                                                                                                                 |         |
|     |                                                                                                                                 | 4 marks |
|     |                                                                                                                                 |         |
| The | e heights of women are normally distributed with a mean of 160cm and a standard viation of 8cm.                                 |         |
| a.  | Between what values are approximately 95% of the women's heights?                                                               |         |
|     |                                                                                                                                 |         |
|     |                                                                                                                                 | 1 mark  |
| b.  | If $Pr(H > 170) = 0.1$ , then find the probability that a woman's height is less than 1 given that it is more than 160cm.       | 70cm,   |
|     |                                                                                                                                 |         |
|     |                                                                                                                                 |         |
|     |                                                                                                                                 | 2 marks |

## END OF QUESTION AND ANSWER BOOK