Student Name:	

MATHEMATICAL METHODS

Units 3 & 4 – Written examination 2

2007 Trial Examination

Reading Time: 15 minutes Writing Time: 2 hours

QUESTION AND ANSWER BOOK

Structure of book

Section Number of questions		Number of Number of questions to be answered		
1	22	22	22	
2	4	4	58	
			Total 80	

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, and rulers, a protractor, set-squares, aids for curve sketching, one bound reference and an approved **graphics** calculator and if desired, one scientific calculator.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.

Materials supplied

• Question and answer book of 26 pages.

Instructions

- Print your name in the space provided on the top of this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

SECTION 1

Instructions for Section 1

Answer all questions.

Choose the response that is **correct** or **best answers** the question.

A correct answer scores 1, an incorrect answer scores 0.

No mark will be given if more than one answer is completed for any question.

Marks will **not** be deducted for incorrect answers

Question 1

The range of the function $f: [-1,5) \to R$, f(x) = 3 - x is

- **A.** [-2, 4]
- **B.** (-2, 4)
- **C.** R
- **D.** (-2, 4]
- E. $(-2, \infty)$

Question 2

If $f(x) = \cos x$ and $g(x) = \sqrt{x}$, then the domain of f(g(x)) is

- **A.** $(-\infty,\infty)$
- **B.** $[0,\infty)$
- C. R
- **D.** $(0,\infty)$
- **E.** [-1,1]

Question 3

The function $f: [1, \infty) \to R$, $f(x) = 3e^{x-1} + 2$ has an inverse function $f^{-1}(x)$.

The function $f^{-1}(x)$ is given by

A.
$$f^{-1}:[5,\infty) \to R, f^{-1}(x) = 3e^{x-1} + 2$$

B.
$$f^{-1}:[1,\infty)\to R, f^{-1}(x)=\log_e\left(\frac{x-2}{3}\right)$$

C.
$$f^{-1}:[5,\infty) \to R, f^{-1}(x) = 1 + \log_e\left(\frac{x-2}{3}\right)$$

D.
$$f^{-1}:[1,\infty)\to R, f^{-1}(x)=1+\log_e\left(\frac{x-2}{3}\right)$$

E.
$$f^{-1}: R \to R, f^{-1}(x) = \frac{x+2}{3} - e^{-1}$$

SECTION 1- continued

The graph of $y = -\log_2(3-x) + 2$ is obtained from the graph of $y = \log_2(x)$ by

- A. a reflection in the x and y-axis, a translation by 3 units right and a translation of 2 units up.
- **B.** a reflection in the y-axis, a translation by 3 units right and a translation of 2 units up.
- **C.** a reflection in the *x*-axis, a translation by 3 units right and a translation of 2 units up.
- **D.** a reflection in the y-axis, a translation by 3 units left and a translation of 2 down.
- **E.** a dilation factor of 2, a translation by 3 units left and a translation of 2 units up.

Question 5

For the function $f: R \to R$, where $f(x) = a \sin(bx) + c$, where a, b and are positive constants, the period, amplitude and range are respectively

A.
$$\frac{2\pi}{a}$$
, a , $[a+c, -a+c]$

B.
$$\frac{2\pi}{h}$$
, a, $[-a+c, a+c]$

C.
$$\frac{2\pi}{b}$$
, a , $[-a, a]$

D.
$$\frac{2\pi}{a}$$
, $-a$, $[a, b]$

E.
$$\frac{2\pi}{r}$$
, c, [-a, a]

Question 6

The sum of the solutions of the equation $2\cos\left(2x+\frac{\pi}{6}\right)=\sqrt{3}$ in the interval $[0,\pi]$ is equal to

A.
$$\frac{\pi}{6}$$

B.
$$2\pi$$

C.
$$\frac{11\pi}{6}$$

D.
$$\pi$$

E.
$$4\pi$$

Question 7

For the graph of $y = |3\cos 2x|$ over the domain $[0, 2\pi]$ then the range is

A.
$$[-3,3]$$

C.
$$[0,3]$$

D.
$$(0,3]$$

E.
$$(0,3)$$

SECTION 1- continued TURN OVER

If $2\log_e 3x - 1 = \log_e a$ where a > 0, then x is equal to

- **A.** $\frac{a}{9}$
- $\mathbf{B.} \quad \frac{\sqrt{a}}{3}$
- C. $\frac{ae}{3}$
- $\mathbf{D.} \quad \frac{\sqrt[3]{ae}}{3}$
- E. $\frac{a}{e}$

Question 9

The derivative of $y = \frac{\cos(2x)}{3e^x - x}$ is

- **A.** $\frac{2\sin 2x(3e^x x) \cos 2x(3e^x 1)}{3e^x x}$
- **B.** $\frac{-2\sin 2x(3e^x x) \cos 2x(3e^x 1)}{9e^{2x} 6xe^x + x}$
- C. $\frac{2\sin 2x(3e^x x) \cos 2x(3e^x 1)}{9e^{2x} 6xe^x + x^2}$
- **D.** $\frac{-2\sin 2x(3e^x x) \cos 2x(3e^x 1)}{9e^{2x} 6xe^x + x^2}$
- E. $\frac{2\sin 2x(3e^x x) \cos 2x(3e^x 1)}{(3x^x x)^2}$

Question 10

A spherical balloon of Volume, $V \text{ cm}^3$ has a radius, r cm where $V = \frac{4}{3}\pi r^3$.

When r = 7 the rate of increase in volume of the balloon with respect to the radius is

- **A.** $49 \, \pi \, \text{cm}^3 / \text{cm}$
- **B.** $196 \, \pi \, \text{cm}^3 / \text{cm}$
- C. $169 \,\pi \,\text{cm}^2/\text{cm}$
- **D.** $\frac{196}{\pi}$ cm²/cm
- **E.** $196 \, \pi \, \text{cm}^2 / \text{cm}$

Question 11

If $f(x) = 2x^3 + ax^2 + bx$ has a stationary point at (-2, -4) then the values of a and b respectively are

- **A.** 9 and 12
- **B.** 12 and 9
- C. -9 and -12
- **D.** 5 and 4
- **E.** 9 and -12

Question 12

An approximate value for $\frac{1}{\sqrt{9.5}}$ is

- **A.** $-\frac{1}{54} \times 0.5 + \frac{1}{3}$
- **B.** $\frac{1}{54} \times 0.5 + \frac{1}{3}$
- C. $-\frac{1}{54} \times 0.5 \frac{1}{3}$
- **D.** $\frac{1}{54} \times 0.5 \frac{1}{3}$
- **E.** $\frac{1}{3} \frac{1}{54} \times 0.5$

For the graph of y = f(x) shown above f'(x) is negative when

A.
$$x > -a$$
 or $x < a$

B.
$$-a < x < a$$

C.
$$x < a \text{ or } x > b$$

D.
$$-a < x < b \text{ or } x > d$$

E.
$$-\infty < x < d$$

Question 14

The hybrid function
$$f(x) = \begin{cases} 9 - x^2, & x \le 3 \\ x - 3, & x > 3 \end{cases}$$
 is

- **A.** differentiable but not continuous at x = 3
- **B.** neither continuous nor differentiable at x = 3
- C. continuous and smooth at x = 3
- **D.** continuous and differentiable for all $x \in R$
- **E.** continuous but not differentiable at x = 3

SECTION 1- continued

A random variable X, has its frequency curve defined as

$$f(x) = \begin{cases} \frac{1}{2}e^{-\frac{1}{2}x} &, x > 0\\ 0 &, \text{ elsewhere} \end{cases}$$

The probability X, is smaller than 2 is

A. -0.3679

B. 1.367

 $\mathbf{C.}$ -0.6321

D. 0.5

E. 0.6321

Question 16

A manufacturer who produces sheets of coloured paper believes there is a probability of 0.2 of any one sheet being defective. The coloured paper is packed 10 to a box. The probability that exactly half of the coloured paper per box is defective is

A. 0.0026

B. 0.9736

C. 0.246

D. 0.0264

E. 0.264

Question 17

The discrete random variable *X* has the probability distribution given by

X	1	2	3	4
Pr(X=x)	0.2	3 <i>k</i>	2 <i>a</i>	3 <i>a</i>

If the mean is 2.6, then the values of a and k respectively are

A. a = 0.1 and k = 0.1

B. a = 0.1 and k = 0.9

C. a = 0.6 and k = 0.2

D. a = 0.6 and k = 0.3

E. a = 0.4 and k = 0.5

SECTION 1- continued TURN OVER

Question 18

A normal random variable X has a mean of 16 and a standard deviation of 4, then the probability that X is greater than or equal to 20 is

- **A.** $Pr(X \ge 1)$
- **B.** $1 \Pr(z \ge 1)$
- **C.** $Pr(z \ge 20)$
- **D.** $Pr(z \ge 1)$
- **E.** $Pr(z \ge -1)$

SECTION 1- continued

The graph of the function f with y = f(x) is shown below.

Which one of the following could be the graph of y = f'(x)?

A.

B.

C.

D.

E.

SECTION 1- continued TURN OVER

Question 20

The total area of the shaded rectangles can be used as an approximation for the area bounded by the curve $y = 9 - x^2$, and the x-axis.

The area of the shaded region shown above is

- A. 15.625 units squared
- B. 16.625 units squared
- C. 17.295 units squared
- **D.** 31.25 units squared
- E. 18 units squared

SECTION 1- continued

Question 21

The graph with equation $y = m(x^2 + 2)$ where m > 0 is shown below.

If the area of the shaded region is 2, then the value of m is

- **A.** 10
- **B.** 3
- C. $\frac{3}{10}$
- **D.** $\frac{10}{3}$
- **E.** $\frac{1}{10}$

Which of the following integrals represents the shaded area shown in the graph below?

$$\mathbf{A.} \quad \int\limits_{-3}^{1} f(x) dx + \int\limits_{1}^{5} f(x) dx$$

B.
$$-\int_{-3}^{1} f(x) dx + \int_{1}^{5} f(x) dx$$

$$\mathbf{C.} \left| \int_{-3}^{5} f(x) dx \right|$$

$$\mathbf{p.} \quad 2\int\limits_{-3}^{1} f(x) dx$$

$$\mathbf{E.} \quad \int\limits_{-3}^{5} f(x) dx$$

END OF SECTION 1

SECTION 2

Instructions for Section 2

Answer **all** questions in the spaces provided.

A decimal approximation will not be accepted if an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working must be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1

Let f be the function $f: D \to R$, $f(x) = \log_e(5-2x)$, where D is the largest possible domain for which f is defined.

a.	Find the exact co-ordinates of the x and y intercepts of the graph of $y = f(x)$.				
		2 mark			
).	Find D the largest possible domain over which f is defined.				
		1 marl			
: .	Use calculus to show that the rate of change is always negative.				
	,				

SECTION 2-Question 1- continued TURN OVER

2 marks

d.

i. Find $f^{-1}(x)$, the rule for f^{-1} .

ii. State the domain and range of f^{-1} .

2 + 1 = 3 marks

e. Sketch the graph of $f^{-1}(x)$. Clearly label any intercepts with the axes and vertical or horizontal asymptotes with its equation.

2 marks **SECTION 2-Question 1-** continued

f.	Using calculus find the exact area bounded by the graph of $y = f^{-1}(x)$ the x-axis and y-axis.				
	2 marks				
	Total 12 marks				

SECTION 2-continued TURN OVER

Question 2

The diagram below shows a design for a shop with two identical display windows situated on a wall. The two windows are equally spaced so that all of the dotted lines are 2 metres long. The total area of each window is to be 12 square metres.

a. Show that $y = \frac{12}{x}$ where y is the width of a window.

2 marks

b. Find the length of the wall, L in terms of x.

1 mark

SECTION 2-Question 2- continued

c.	Find the height of the wall, H in terms of x .			
d.	Show that the total area, A square metres of the wall excluding the windows is a function of the window height x metres is modeled by			
	$A = 24 + 6x + \frac{96}{x}$			
	3 marks			

SECTION 2-Question 2- continued TURN OVER

e.	Find $\frac{dA}{dx}$.
	1 mark
f.	Find the minimum value of x for which the area, A is a minimum. Hence find the value of A .
	3 marks
g.	Using calculus verify that the area is a minimum.
	2 marks

SECTION 2-Question 2- continued

h. Sketch the graph of A against x.

2 marks

i .	Find the width of the window, y , which will give a minimum area, A .			
	1 mar			

Total 16 marks

SECTION 2-continued TURN OVER

Question 3

On 'Lee's Celebrity Quiz' show, each team has to answer a total of 20 questions. There are 5 questions in each category and 4 categories are covered in each show.

The score *X*, represents the number of correctly answered questions out of a set of 5 questions in a particular category.

The probability of the celebrity team obtaining a particular score of *X* in the category of **Music** is shown in the table below:

х	0	1	2	3	4	5
Pr(X=x)	0.06	0.04	0.3	0.1	0.2	0.3

a.	Fir i.	nd the probability that on the next Quiz Show the celebrity team will answer all the Music questions correctly.				
i	ii.	less than half of their Music questions correctly.				

SECTION 2-Question 3- continued

1 + 2 = 3 marks

For the celebrity team, the probability of obtaining a particular value of x in the category of **Maths** is shown in the table below:

X	0	1	2	3	4	5
Pr(X=x)	p	3 <i>q</i>	q	p	p	p

· · · · · · · · · · · · · · · · · · ·
3 marks
am scores a total of ten for their Maths and Music

SECTION 2-Question 3- continued TURN OVER

The Quiz Show has a regular team of celebrities who frequently appear on the show. The probability of this regular team of celebrities appearing on the show is 0.85. The teams are chosen at random.

d.	Find the probability	that the regular	celebrity team	will compete or	the next six shows.
----	----------------------	------------------	----------------	-----------------	---------------------

2 marks

e. For how many successive shows coming up will there be a better than even chance of having the regular celebrity team on the show?

2 marks

When Lee is on the Celebrity Quiz Show, the time, *t* hours, that he spends on the show is a continuous random variable with probability density function given by

$$f(t) = \begin{cases} t^3 - 9t^2 + 26t - 24 & \text{,} & 2 \le t \le 3 \\ 0 & \text{,} & \text{otherwise} \end{cases}$$

f. Sketch the graph of f(t) on the axes below. Label any stationary points with their coordinates, correct to two decimal places.

2 marks **SECTION 2-Question 3-** continued

	What is the probability, correct to three decimal places, that Lee spends less than 150 minutes on the quiz show?					
	2 marks					
	Using calculus, find the expected time, to the nearest minute, that he spends on the quiz show.					
	2 marks					

SECTION 2-continued TURN OVER

Question 4

The entrance to a shopping centre is given by the curve $y = 4 - \frac{1}{2}e^{\frac{x}{2}} - \frac{1}{2}e^{-\frac{x}{2}}$ as shown in the diagram below:

.

a. The y-axis intercept of the graph represents the height of the entrance door is b. Show that b = 3.

1 mark

b.	Find the exact value of <i>a</i> .	Show your working.	

4 marks

SECTION 2-Question 4- continued

- **c.** To approximate the area of the door, assume the value of a = 4.
 - i. Use the curve of $y = 4 \frac{1}{2}e^{\frac{x}{2}} \frac{1}{2}e^{-\frac{x}{2}}$ to find the approximate area of the door correct to two decimal places, using rectangles of width 1 metre as shown in the diagram below:

		

ii. The shopping centre uses this to approximation to estimate the cost of painting the entrance door. If the cost is \$35 per square metre, find the cost of painting the door.

2+1=3 marks

SECTION 2-Question 4- continued TURN OVER

The area of the entrance door to the shopping centre is approximated with a parabola by using the points $(0, 3)$, $(4, 0)$, $(-4, 0)$. Find the equation of this parabola.				
				
3 marks				
Use calculus to find the area enclosed by the parabola and the <i>x</i> -axis, giving answer correct to two decimal places.				
2 marks Total 13 marks				

END OF QUESTION AND ANSWER BOOK