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SECTION 1 
 
Question 1   Answer  E 
 

3y x=   into ( ) ( )3 34 6 1 or 1 4 6y x y x= − + − = −  

' 1 and 4 ' 6y y x x= − = −    become 
3' 0.25 1.5 and ' 1

4 2
xx x y y= + = + = +   in matrix form 

' 0.25 0 1.5
' 0 1 1

x x
y y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 
Question 2   Answer  D 
 
The equations can be written as  
( ) ( )1 3 1 5x m y− + + =    

( ) ( ) ( )2 3 8 2 4m x y m− + + = +  

( ) ( ) ( )x3 1 3 2m + −   becomes 

( )( )( ) ( ) ( )
( )

( )
( )( )

2

3 1 24 5 3 3 2 4

4 21 3

3
3 7

m m y m m

m m y m

m
y

m m

+ + − = + − +

+ − = − +

− −
=

− +

 

There is a unique solution if  \{3, 7}m R∈ −  
If  3m =   the equations become 
( )1 3 4 5x y− + =    

( )2 6 8 10x y− + =    which are the same line and have an infinite number of solutions 
If  7m = −   the equations become 
( )1 3 6 5x y− − =    

( )2 4 8 10x y+ = −    which are parallel lines, with no intersection points, and hence 
there is no solution when 7m = −  
 



Mathematical Methods  CAS Trial Examination 2  2007  Solutions   Section 1     Page 5 

© KILBAHA PTY LTD 2007 

Question 3   Answer  A 
 

The function  ( ): ,2f R−∞ →  has the rule ( )
( )2

9 4
2

y f x
x

= = −
−

 interchanging x and y  

the inverse is  
( )

1
2

9 4
2

f x
y

− = −
−

    transposing to make y  the subject 

( )
( )2

2
9 94 2

42
x y

xy
= + − =

+−
 

32
4

y
x

− = ±
+

  we need to take the negative, since the ( )1ran dom ,2f f− = = −∞  

 ( )1 32
4

y f x
x

−= = −
+

 

 
Question 4   Answer  D 
 

( )
2 2 5 2

15 5 2
x x x

f x
x x

⎧ − + ≤
= ⎨

− >⎩
  

at  ( )2 2 5x f= =  the hybrid 

graph joins up at 2x = , so the 

function is continous for x R∈   

but the function is not 

differentiable at 2x = . 

 

 
 
Question 5   Answer  D 
 

( ) 0.1

500
0.03 tP t

e−=
+

,  the average rate is  ( ) ( )2 0
2 0

P P−
−

 

( ) ( )2 0 589.115 485.437 103.678 51.8
2 0 2 2

P P− −
= = =

−
 

 

x

y

-1 0 1 2 3

-2

0

2

4

6

8
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Question 6   Answer  C 
 
If   ( ) ( )logef x x=   then  for  0 and 0x y> >  

( ) ( ) ( ) ( ) ( ) ( )log log loge e ef x y x y x y f x f y= = + = +  
 
Question 7   Answer  E 
 
5 3 2x− >    means that 

5 3 2x− >          or           5 3 2x− < −  
3 3x>    7 3x<  

1x <    
7
3

x >  

 
Question 8   Answer  E 
 
The function  ( ) 3 23 24 5f x x x x= − − +   will have an inverse only if it is a one-one 
function,  it has turning points at  2 and 4x x= − = , the only possible value of a is 

2a ≤ −  

x

y

-2 0 2 4

-50

0

50

 
 
Question 9   Answer  B 
 

The graph of  1 3
2

y
x

= −
+

 has a domain of   \{ 2}R −  and a range of  \{ 3}R −  

so that    2 3a c= = −   
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Question 10   Answer  E 
 

( ) ( ) ( )cos 4f x h x x=  now differentiating using the product rule 

( ) ( ) ( ) ( ) ( )cos 4 4 sin 4f x h x x h x x′ ′= −  equating to 

( ) ( ) ( )( )44 sin 4 cos 4xf x e x x−′ = − +   gives ( ) ( )4 44 andx xh x e h x e− −′ = − =  
 
Question 11   Answer  C 
 

( )
a

b

f x dx A=∫  then ( )( ) ( ) [ ] ( ) ( )
b b a

b

a
a a b

f x dx f x dx x f x dx b aα β α β α β+ = + = − + −⎡ ⎤⎣ ⎦∫ ∫ ∫  

( )( ) ( )
b

a

f x dx b a Aα β β α+ = − −∫  

 
Question 12   Answer  C 
 
Let the isosceles triangle, have its hypotenuese 
length of  x,  by Pythagorus, the other two equal 

sides are 
2

x , the area of the triangle is 

2 21
2 42

x xA ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 now given that  2dx
dt

=  

We need to find  dA
dt

  now 
2

dA x
dx

=  

by the chain rule 
2 when 4 2 4
2

dA dA dx x dAx
dt dx dt dt

= = = =  

 
Question 13   Answer  C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

2
x

2
x

x 

   a                b            c               d                   e
x

y 

1A  

2A  

3A

4A
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Now  ( ) ( ) ( ) ( )1 2 3 4

b c d e

a b c d
A f x dx A f x dx A f x dx A f x dx= = = =∫ ∫ ∫ ∫  

but  2 40 and 0A A< <   since they are below the x-axis, the area is 

1 2 3 4A A A A A= − + − ( ) ( ) ( ) ( )
b c d e

a b c d
f x dx f x dx f x dx f x dx= − + −∫ ∫ ∫ ∫  

 
Question 14   Answer  B 
 

( )logey ax b= +   The graph crosses the x-axis when ( )0 since log 1 0ey = =  

1ax b+ =   so that 1 bx
a
−

=  and has a  

maximal domain when 0 or , .b bax b x
a a

⎛ ⎞+ > > − − ∞⎜ ⎟
⎝ ⎠

 

 
Question 15   Answer  C 
 
The gradient is positive when the graph of the function is sloping upwards, that is when 

and 0x b x e< < <  
 
Question 16   Answer  A 
 

( ) ( )
3

0 1 0

lim 3sin 3 3sin 3
n

x i
x x x dx

δ
δ

→
=

=∑ ∫  

 
Question 17   Answer  A 
 

( ) ( )4 4 44 4 16 4x x xf x e d x e dx e c− − −= = = − +∫ ∫   to find c use  ( )0 0f =  

( ) ( )4 40 4 so that 4 4 4 4 1x xc c f x e e− −= − + = = − + = −  
 
Question 18   Answer  B 
 
Given that  ( )Pr Z c a< =  

( ) ( )
( ) ( )
( ) ( )
( )

Pr Pr

Pr 2Pr 0

Pr 2 0.5

Pr 2 1

Z c c Z c

Z c Z c

Z c a

Z c a

< = − < <

< = < <

< = −

< = −
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Question 19   Answer  D 
 

The mean value is ( )1 b

a

f x dx
b a− ∫  

( ) ( )( )

5 5

0
0

1 55sin cos
5 0 5 5

5 cos cos 0

10

x xdxπ π
π

π
π

π

⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎢ ⎥− ⎝ ⎠ ⎝ ⎠⎣ ⎦

= − −

=

⌠
⎮
⌡

 

 
Question 20   Answer  A 
 
Since it is a discrete random variable, the probabilities add to one, so that 1a b+ =  

( ) ( )2 2 Pr 4 but 1E X x X x a b a b= = = + = −∑    so that   

( )2 1 3E X b= +  
 
Question 21   Answer  D 
 

X is the number of people listening to an Ipod  810, 0.4
20

dX Bi n p⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 

( ) 10 4 6
4Pr 4 0.4 0.6X C= =   

 
Question 22   Answer  B 
 

( ) x x x
100 90 60Pr all different 6 0.2099
250 249 248

= ≈  Note that the 6 needs to be included as 

there are six different orderings,  ABC  ACB  BAC  BCA  CAB  CBA 
 
 
 

END OF SECTION 1 SUGGESTED ANSWERS 
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SECTION 2 
Question 1 
 

a. ( )2 2 29 4 at 9 4 ,9 4y x x a y a P a a= − = = − −  

 8 8T
x a

dy dyx m a
dx dx =

= − = = −       M1 

the equation of the tangent is  ( ) ( )29 4 8y a a x a− − = − −      
28 9 4y ax a= − + +         A1 

 
b.i. at C   0x y c= =  
 29 4c a= +          A1 
  
  ii. at B   0x b y= =  
 20 8 9 4ab a= − + +           
 28 9 4ab a= +  

 
29 4

8
ab

a
+

=          A1 

 

c. i. the area of the triangle BOC  
( )229 41

2 16
a

A bc
a

+
= =     A1 

    

  ii. 
( )( )2 2

2

3 4 3 4 9
0

16
a adA

da a
− +

= =      

 for minimum area  0dA
da

=   so that   2 3 3but 0
4 2

a a= < <    A1 

3
2

a =          A1 
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   iii. min
3 6 3

2
A

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
        A1 

using a sign test  if 
30.8 1.49

2
30.9 0.68

2

dAa
da
dAa
da

= < = −

= > =

       M1 

dA
da

  goes from negative to zero to positive, it is a minimum. 

 
   iv. Graph restricted domain  ( )0,1.5   0a =   is a vertical asymptote A1 
 
 

a

A

0 0.5 1 1.5

0

5

10

15

20
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Question 2 
 

a.  

 
 

 
DDT or DTD or TDD   using a tree diagram    M1 

x x x x x x0.35 0.25 0.75 0.35 0.75 0.35 0.65 0.35 0.25+ +    
0.2144=          A1  

 

b. 0.35 0.318
0.35 0.75

=
+

         

or alternatively 
1000.65 0.75 0.682 0.682

0.35 0.25 0.318 0.318
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 in the long run, the probability that he takes the train to work  0.318 A1 
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c. D is the driving time ( )2 235, ?dD N μ σ= = =  

 ( )Pr 30 0.30D < =  now ( )Pr 0.524 0.30Z < − =       

 
30 35 5 0.5244

σ σ
−

= − = −        M1 

 9.5 minutesσ =         A1 
       
d.   the maximum is ( )0.399,1.520 ,  t axis a horizontal asymptote  A1 

graph correct shape, domain [ )0,∞ , as 0t y→ ∞ →     A1 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

e. 20 minutes 1
3

=   hour  and  30 minutes 1
2

=  hour 

1 22

1
3

1 1Pr 2
3 2

tT te dtππ −⎛ ⎞< < =⎜ ⎟
⎝ ⎠ ∫  

 
1

2 2

1
3

1 1Pr
3 2

tT e π−⎛ ⎞ ⎡ ⎤< < = −⎜ ⎟ ⎣ ⎦⎝ ⎠
       M1 

 9 41 1Pr
3 2

T e e
π π− −⎛ ⎞< < = −⎜ ⎟

⎝ ⎠
       A1 

 

t

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.

-0.5

0

0.5

1

1.5 ( )0.399,1.520  
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f. 9 41 1Pr 0.249
3 2

T e e
π π− −⎛ ⎞< < = − =⎜ ⎟

⎝ ⎠
      A1 

 ( )3, 0.249dY Bi n p= = =        M1 

 ( ) ( ) ( )3Pr 1 1 Pr 0 1 1 0.249Y Y≥ = − = = − −  

 ( )Pr 1 0.577Y ≥ =         A1 
 

g. ( ) 22

0
2 0.5 hourtE T t e dtππ

∞ −= =∫       A1 

 the mean train travel time is 30 minutes     A1 
 

h. 
2

0
2 0.5

m tte dtππ − =∫         A1 

 
2 2

0
1 0.5

m
t me eπ π− −⎡ ⎤− = − + =⎣ ⎦       M1  

2

2

0.5

2

m

m

e

e

π

π

− =

=
 

0.47 hoursm =  
 28m =  minutes        A1 
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Question 3 
 
 

a.i. ( )0 90f s= =          A1 
 
  ii. ( ) ( ) ( )4 2100 100 100 0f q r s= + + =  

 ( )8 410 10 90 1q r+ = −        A1 
 

b.i. 

4 2

34 2

y qx rx s
dy qx rx
dx

= + +

= +
 

 at  50 0dyx
dx

= =         M1 

 ( )3
x0 4 50 2 50 0q r= + =  

 ( )5,000 2r q= −         A1 
   
   ii. in the equation 4 25000 90 0q x q x− + =   let  2u x=  as a quadratic in u 
 2 5000 90 0qu qu− + =  

for more than one solution, the discriminant  must be positive   M1 
( )2

2

x5000 4 90

25,000,000 360
625000360 1

9

q q

q q
qq

Δ = − −

Δ = −

⎛ ⎞Δ = −⎜ ⎟
⎝ ⎠

       M1 

90 and
625000

q q< >        A2 

 
   iii. substitute ( ) ( )2 into 1  

 8 4
x10 5000 10 90q q− = −        M1 

 50,000,000 90q = −  

 9 9
5,000,000 1,000

q r= − =       A1 

 
c. 4 2y qx rx s= − − −    reflection in the x-axis 

 
4 29 9 90 for 0 100

5,000,000 1,000
x xy x= − − ≤ ≤     A1 
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d. now ( )50 101.25y =  
 the maximum width is  202.5  cm      A1 
 

e. 

100
4 2

0

9 94 90
5,000,000 1,000

x xA dx
⎛ ⎞

= − + +⎜ ⎟
⎝ ⎠

⌠
⎮
⌡

     A1 

 233,600 cmA =         A1 
 
f. 2 for 100 50y a bx x x= − − − − ≤ ≤ −      A1 
 
g. 2 when 100 0y a bx x x y= − = =  

 20 100 100a b= −           
 so that  100b =         A1 
 

 2 405when 50 101.25
4

y a bx x x y= − = = =  

 2
x

405 100 50 50
4

a= −                 

 
40550
4

a =  

 and   81
40

a =           A1 

  now  ( )( ) ( )1
2 2

2

2
2

2 2

a b xdy a b x bx x
dx bx x

− −
= − − =

−
     

 when  50 100 0dyx b
dx

= = ⇒ =     

the join is smooth gradients are equal at  50x =     A1  
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Question 4 
 

a. The maximum number of hours of daylight is  ( )1 24 5 14.5
2

+ =  hours  

and occurs when  ( )22
cos 1

183
tπ −⎛ ⎞

=⎜ ⎟
⎝ ⎠

   so that    ( )22
0

183
tπ −

=   or  22t =  

on the 22nd of January.       A1 

b. The minimum number of hours of daylight is  ( )1 24 5 9.5
2

− =  hours  

and occurs when  ( )22
cos 1

183
tπ −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

   so that        M1 

  
( )22
183
tπ

π
−

=   or  183 22 205t = + =  

 
on the 205th day of the year.       A1 

 
 

c.i. ( )22
2cos 1 0

183
xπ −⎛ ⎞

+ =⎜ ⎟
⎝ ⎠

 

 

( )

( ) 1

22 1cos
183 2

22 1 22 cos 2
183 2 3
22 366 122

x

x
n n

x n

π

π ππ π−

−⎛ ⎞
= −⎜ ⎟

⎝ ⎠
− ⎛ ⎞= ± − = ±⎜ ⎟

⎝ ⎠
− = ±

     M1 

 366 100 or 366 144 wherex n x n n Z= − = + ∈     A1 
 

   ii. first solve    ( ) 10.75h t =   10 hours 45 minutes 

 ( )221 24 5cos 10.75
2 183

tπ⎛ ⎞−⎛ ⎞
+ =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 ( )22 1cos
183 2
tπ −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 

 
366 100 when 1 266
366 144 when 0 144

266 144 122 and 366 122 244 days

t n n t
t n n t

= − = =
= + = =

− = − =
     M1    

 so daylight of at least 10 hours and 45 minutes occurs for  244 days A1 
( these values could have been obtained graphically ) 
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d. ( ) ( )22512 cos
2 183

t
h t

π −⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
 

( )225 sin
366 183

tdh
dt

ππ −⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
   hours/day     A1 

 

e. dh
dt

  has a maximum value 5
366

π   hours/day      A1 

and occurs when ( )22
sin 1

183
tπ −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

   that is when 

( )22 3
183 2
tπ π−

=    or  x3 18322 296.5
2

t = + =       

during the 296th day         A1 
 
 

f. ( )
31

1

22512 cos
2 183

t
dt

π⎛ ⎞−⎛ ⎞
+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⌠
⎮
⌡

      A1  

 433.781=    hours         
433=  hours and 47 minutes       A1 

 
 
g. 12 and 4.5a b= = −        A1 
 
 
 
 

END OF SECTION 2 SUGGESTED ANSWERS 
 


