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                                                                MATHS METHODS 3 & 4 

                                                       TRIAL EXAMINATION 2 

                                                                     SOLUTIONS 

                                                                            2007 

 
 

 

1. D  9.   D  17.  B 

2. B  10. C  18.  C 

3. C  11. E  19.  C 

4. C  12. B  20.  E 

5. D  13. D  21.  D 

6. B  14. A  22.  E 

7. E  15. A 

8. A  16. E 

 

 

Section 1 – Multiple-choice solutions 

 

Question 1 

 

For ( )
34

2

−
=

x
xf , the maximal domain is given by 

4x − 3> 0

4x > 3

x >
3

4

 

The answer is D. 

 

 

Question 2 

 

( )

1
4

2cos3

1
2

2cos3

+














 +=

+






 +=

π

π

x

xxf

 

The period is 
2π
2

= π  and the amplitude is 3. 

The answer is B. 
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Question 3 

 

( )
( )

( )
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,
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8
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x

x

x

xx

xx

 

The sum is 
18π
6

 or 3π . 

The answer is C. 

 

 

Question 4 

 

Draw a quick tree diagram. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

There are 8 possible outcomes, 

1 of those is to get 3 heads, 

3 of those are to get 2 heads, 

3 of those are to get 1 head, 

and 1 of those is to get 0 heads. 

The answer is C. 
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Question 5 

 

Sketch the graph of y = x −1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the function f, [ )5,1−=fr . 

Looking at the graph when y = −1, x = 0 . (Check y = x −1, −1= 0−1). 
Again looking at the graph when y = 5, x = 6 . (Check y = x −1, 5 = 6−1). 
So the domain of )[ 6,0=f  

The answer is D. 

 

 

Question 6 

 

A translation of 2 units to the left changes the rule xey −=1 to become y =1−e
x+2( )

. 

A reflection in the y-axis changes the rule to y =1−e
−x+2( )

 

The answer is B. 

 
Question 7 

 

 

))(( xfg  exists if gf dr ⊆ . 

Now )[ ∞= ,0gd . 

So we require that )[ ∞⊆ ,0fr . 

For option A. Rr f = . 

For option B. Rr f = . 

For option C. Rr f = . 

For option D. )[ ∞−= ,1fr . 

For option E. [ ).,0 ∞=fr  

The answer is E. 

 

 

x

y

5

1 2 3 4 5
-1

2

3

4

1

6

1−= xy



4 

 

©THE HEFFERNAN GROUP 2007                   Maths Methods 3 & 4 Trial Exam 2 solutions 

Question 8 

Let y = 2e
−x +1 

Swap x and y 

( )

( ) ( )
2

1
log    So

2

1
log

2

1
log

2

1

21

12
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−
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−=

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x
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y

 

The answer is A. 

 

Question 9 

 
Method 1 

 

( )

4

1

14

123

123

2

3

32

123

123

=

−=−

+=+−

+=−−

=

=

+=−

+=−
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p
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The answer is D. 

 

Method 2 

 

Sketch 1 and )23(abs 21 +=−= xyxy . 

Points of intersection occur at 
2

3
or  

4

1
 so,,

2

3
at  and 

4

1
==== ppxx . 

The answer is D. 

 

Question 10 

 

( )
( ) ( )
( ) ( )( )xxe

xexe

xey

x

xx

x

3sin3cos3

3cos33sin

3sin

−=

×+−=

=

−

−−

−

 

The answer is C. 

if 3p−2 > 0

3p > 2

p >
2

3

 

if 3p−2 < 0

3p < 2

p <
2

3
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Question 11 

 
Method 1 
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The answer is E. 

 

 

Question 12 

 
Let v equal the volume of the cylinder. 

π

π

π

π

π

5.2  ,10When   

1
25

rule)(Chain         So

.10when  find  torequired are We

1
  Also

25

25

5     since

2

==

×=

⋅=

=

=

=

=

=

=

dt

dv
t

t

dt

dh

dh

dv

dt

dv

t
dt

dv

tdt

dh
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r
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The answer is B. 

Method 2 

Sketch 2

1

2 )2( xxy += . 

Calculate 1 when =x
dx

dy
. 

   

32

5

4433757.1

=

=
dx

dy

 

 

The answer is E. 
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Question 13 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

( )xf  is positive for 22 >∪−< xx . 

( )xf '  is the gradient of ( )xf  and is positive for x > 0. 

So ( )xf  and ( )xf '  are both positive for x > 2. 

The answer is D. 

 

Question 14 

 

Let the antiderivative function of f be called g. 

So ( ) ( )xfxg =' . 

For ( ) ( ) 0 ,, >−∈ xfaax  so the graph of g will have a positive gradient. 

Note that for there to be a stationary point (which may be a local min/max or point of 

inflection) ( ) 0=xf . For ( ) ( ) 0 ,, ≠−∈ xfaax . 

The answer is A. 

 

Question 15 

 

( ) ( )

( ) cx

cxdxx

+−=

+−
×

=−∫
7

76

12
14

1
                     

12
72

1
12

 

The answer is A. 

 

Question 16 

 

( ) ( )
( ) ( )

( ) ( ) cxgxxh

dxxgxdxdxxh

xgxxh

+−=

−=

−=

∫ ∫ ∫
3         

'32'

'32'        

2

 

Now ( ) ( ) 32 and 42 == gh  

( ) ( ) 93      So

9

944

,2 when So

2 +−=

=

+−=

=

xgxxh

c

c

x

 

The answer is E. 
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x
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Question 17 

 

Sketch the graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Area = − −sin x( )dx + −sin x( )dx
π

2π

∫
0

π

∫

= 2 sin x( )dx
0

π

∫  because of the symmetry of the sine curve

 

The answer is B. 

 

 

Question 18 

 

( ) ( )
( ) ( )

( )
( )
( )

( )
( )

( ) ( )places dec. 4 to 5850.0          places dec. 4 to 5850.0

rule) base of change(
2log

5.1log
             OR                 

2log

5.1log

5.1log

6

9
log

6log3log

6log3log2

10

10

2

2

2
2

2

22

==

=

=








=

−=

−

e

e

 

The answer is C. 
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Question 19 

 

 

 

 

 

 

 

 

 

 

 

The shaded area is given by normalcdf(39, 100, 42,2) = 0.93319… 

            = 93% to the nearest percent 

(Alternatively, normalcdf(-1.5,100,0,1) = 0.93319…) 

The answer is C. 

 

 

Question 20 

 

This represents a binomial distribution because there is a fixed probability of an event 

happening i.e. 0.78 and there is a fixed number of “trials” i.e. 4 and we want a particular 

number of events to occur i.e. 3 or 4. 

Method 1 

 

( ) ( )
( ) ( ) ( ) ( )
78780

220780220780

goals 4Prgoals 3Pr

04

4
413

3
4

⋅=

⋅⋅+⋅⋅=

+

CC  

 

The answer is E. 

 

Method 2 

 

binompdf(4,0.78,3) + binompdf(4,0.78,4) 

= 0.7878 

 

The answer is E. 

 

Question 21 

 

The mode is the value of x for which the maximum value of f occurs. 

Now, ( )( ) 20for  11
4

3 2 ≤≤−−= xxy , describes the graph of an inverted parabola with a 

maximum turning point at 







4

3
,1 . 

So the maximum value of f is 
3

4
 and it occurs at x =1. 

The mode (that is the most popular value) is 1. 

The answer is D. 

 

 

 

36 38 39 4240 44 46 48

10 2 3-3 -2 -1.5 -1Z

X
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Question 22 

 

The graph of ( )xfy =  could be 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Both of these graphs produce the graph of ( )xfy = . 

The equation of the first could be ( ) ( )52
2 −−= xxy . This is option E. 

The equation of the second could be ( ) ( )52
2 −−−= xxy . This is not offered. 

The answer is E. 

 

 

 

x

y

52

x

y

52
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SECTION 2 
 

Question 1 

 

a. ( )xxy e 2log6 2=  

x-intercept occurs when y = 0 

( )

( )
( )

2

1

12

2

02logor    

,0         since

sreject thi but we 0

06 Either    

2log60

0

2

2

=

=

=

=

∞=

=

=

=

x

x

xe

x

d

x

x

xx

e

f

e

 

The x-intercept occurs at 
1

2
,0

 

 
 

 

 
  as required 

(1 mark) 

 

b. The function ( ) ( )xxxf e 2log6 2=  is only defined for values of x such that 2x > 0 ; 

that is, for x > 0 because ( )xe 2log  is only defined for these values. 

 (1 mark) 

 

 

c. Use a graphics calculator to locate the turning point. It is the point ( )30,30 ⋅−⋅  where 

each coordinate is correct to one decimal place. 

(1 mark) 

 

 

d. From part c. the range is [ )∞⋅− ...,27590  or [ )∞⋅− ,30  correct to one decimal place. 

(1 mark) 
 

 

e. i. The function f does not have an inverse function because it is not a 1:1 

function. 

(1 mark) 

 

 

ii. The function g must be a 1:1 function since g−1 exists. 

The maximal domain of g is therefore [ )∞⋅ ...,30320  where the value of a is 

the x-coordinate of the turning point of the curve.  The answer is a = 0 ⋅ 3 
where a is correct to one decimal place. 

(1 mark) 
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f. i.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

( ) ( )

places) decimal 2 o(correct t units square 381

...38181

1250750250

method rectanglesright  using area eApproximat

⋅=

⋅=

×⋅+⋅×⋅= ff
  (1 mark) 

 

ii. Since the right rectangles extend above the function f the approximation will 

be greater than the exact area. 

(1 mark) 

g. i.  

( )

( )

( ) 22

32

3

2log3

2

2
2log3

2log            

xxx

x
xxx

dx

dy

xxy

e

e

e

+=

×+=

=

 

So 1 and 3 == ba  

(1 mark) 

ii. Hence means use what you have already found. 

From part i., we found that ( )( ) ( ) 223 2log32log xxxxx
dx

d
ee +=  

If we antidifferentiate each term on both sides, we obtain 

( ) ( ) constant a is    where2log32log 1
22

1
3 cdxxdxxxcxx ee ∫ ∫+=+ . 

Rearranging, we obtain 

( ) ( )

( ) c
x

xx

dxxcxxdxxx

e

ee

+−=

−+= ∫∫

3
2log                         

2log2log3 

3
3

2
1

32

 

(Note that c = the sum of c1 and the constant that arose from ∫ dxx2
.) 

So ( )∫ 







+−= c

x
xxdxxx ee

3
)2(log22log6

3
32  

      ( ) c
x

xx e 2
3

2
2log2

3
3 +−=  

  

 

x

4

0.75 10.5

y

)(xfy =

(1 mark) 

(product rule) 

(1 mark) 

(1 mark) 
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Now the exact area 

( )

( )

( )

( )

( ) units square 
12

7
2log2

12

1

3

2
2log2

12

1
)1(log

4

1

3

2
2log2

3

2
2log2

2log6

1

50

3
3

1

50

2

−=

+−=
















 −−






 −=









−=

=

⋅

⋅
∫

e

e

ee

e

e

x
xx

dxxx

 

(1 mark) 

(Note – if you have time, check your answer using a calculator: 

( )

...)80296.0
12

7
)2(log2 and

...80296.02log6

1

50

2

=−

=∫
⋅

e

e dxxx

 

 

 

Total 15 marks 

(1 mark) 

(1 mark) 
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Question 2 

 

a. i. The probability that Sealord’s provides the seafood on Thursday, Friday and 

Saturday given that it supplied it on Wednesday is 0 ⋅ 7× 0 ⋅ 7×0 ⋅ 7 = 0 ⋅ 343 . 
(1 mark) 

 

ii. Draw a tree diagram to see all the possible outcomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1 mark) 

Looking at the possible outcomes the probability that Sealord’s supplies on at 

least two of the next three nights 

( ) ( ) ( ) ( )

7420

1260126014703430

)706030()603070()307070()707070(

PrPrPrPr

⋅=

⋅+⋅+⋅+⋅=

⋅×⋅×⋅+⋅×⋅×⋅+⋅×⋅×⋅+⋅×⋅×⋅=

+++= KSSSKSSSKSSS

 

(1 mark) 

iii. From the tree diagram, the probability that the first time Kingfisher supplies 

the restaurant is on Saturday or on Sunday. 

( ) ( )

24990

102901470

)30707070()307070(

branch) more 1by   tree the(extend PrPr

⋅=

⋅+⋅=

⋅×⋅×⋅×⋅+⋅×⋅×⋅=

+= SSSKSSK

 

(1 mark) 

b. Pr(Marco spends more than 5 hours in the kitchen on a particular night) 

( )( )

1040

61
125

6
6

5

⋅=

−−−= ∫ dttt
 

(1 mark) 

(1 mark) 

(1 mark) 

(1 mark) 
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0.7
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0.7

0.3

0.6

0.4
0.7

0.3
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0.3
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S
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S

S
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S

S

K
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K

K
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S
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c. This is a binomial distribution with p = 0 ⋅104  (from part b.), n = 4 and x = 3. 

Method 1 

( ) ( )

places) decimal 3 o(correct t 0040

...004030

89601040

yprobabilit Required

13

3
4

⋅=

⋅=

⋅⋅=

= −

C

qpC xnx
x

n

 

Method 2 

Using a calculator, binompdf(4,0.104,3) = 0.004 (correct to 3 decimal places) 

 

                 (1 mark) for correct answer 

(1 mark) for recognition that it was a binomial distribution 

 

d. Method 1 

Sketching the graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1 mark) 

We have an inverted parabola with its axis of symmetry located at t = 3 ⋅5 . 
So the median time spent in the kitchen on a night by Marco is 3.5 hours since the 

area under the graph for t < 3 ⋅5  is equal to the area under the graph for t > 3 ⋅5 . 
 (1 mark) 

 

Method 2 

Let m be the median. 

We require that  

( )

( )( )∫

∫

⋅=−−−

⋅=

m

m

dttt

dttf

1

1

5061
125

6

50                    

 

(1 mark) 

Use your calculator and a trial and error method to find the upper limit m. 

It is 3.5. 

(1 mark) 

  

t
1 63.5

y

)(tfy =
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Method 3 

Let m be the median. 

We require that  

( )

( )( )( )

( )

53   So

5.3at  intersectsIt 

  .calculator graphics a using6 and 1between  axis,-  theis, that ,0

 withdintersecteit   wheresee and35876
2

7

3
 graphingby   thisSolve

035876
2

7

3
                      

641103826
2

7

3
                        

506
2

7

3

1
6

2

7

3125

6

506
2

7

3125

6
                           

5067
125

6
                           

5061
125

6
                        

50                                                

23

23

23

23

1

23

1

2

1

1

⋅=

=

===

++−=

=⋅++−

⋅−=⋅−+−

⋅=



















 +−−







+−−

⋅=







+−−

⋅=+−−

⋅=−−−

⋅=

∫

∫

∫

m

x

xxxy

.x
xx

y

m
mm

m
mm

m
mm

t
tt

dttt

dttt

dttf

m

m

m

m

ɺ

ɺ

ɺɺ  

 (1 mark) 

 

Total 12 marks 

 

 

(1 mark) 
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Question 3 

 
a. i. At point A, x = 0. 

( ) ( ) ( ){ }
2

725020
56

1
0

3

−=

−+−=f
 

A is the point ( )2,0 − . 

(1 mark) 

ii. At point C, y = 0. 

Use a graphics calculator to solve ( ) ( ){ }7252
56

1
0

3 −+−= xx . 

The answers are x = −5 ⋅1934... and x = 4 . 

C is the point ( )0,4 . 

(1 mark) 

b. ( ) 20 −=f  from part a.i. 

        = 2  
 (1 mark) 

c. Method 1 – expanding then differentiating 

 

( ) ( ) ( ){ }

( )( )( ){ }

( )( ){ }

( )

( )

( ) ( )523634
56

1
'

1125218
56

1

724012440124103
56

1

7210344
56

1

725244
56

1

7252
56

1
           

23

234

223234

22

2

3

+−−=

−+−−=

−−+++−−−+=

−−++−=

−+−+−=

−+−=

xxxxf

xxxx

xxxxxxxx

xxxx

xxxx

xxxf

 

 

 Method 2 – using the product rule 

 

 

( ) ( ){ }

( ) ( ) ( ){ }

( ) ( ) ( )( ){ }

( ) ( ){ }

( )( ){ }

( )523634
56

1

13444
56

1

1342
56

1

5322
56

1

52312
56

1
)('

7252
56

1
)(

23

2

2

2

23

3

+−−=

++−=

+−=

++−−=

+−+×−=

−+−=

xxx

xxx

xx

xxx

xxxxf

xxxf

 

  

(1 mark) 

(1 mark) 

(1 mark) 

(1 mark) 

 



18 

 

©THE HEFFERNAN GROUP 2007                   Maths Methods 3 & 4 Trial Exam 2 solutions 

d. i. At point B, ( ) 0' =xf . 

 

Method 1 – following on from Method 1 in part c.  

( ) ( ) 0523634
56

1
' 23 =+−−= xxxxf  

Use a graphics calculator to solve this. x = 2 is a solution that corresponds to 

B’s position. 

 

Method 2 – following on from Method 2 in part c. 

( ) ( ){ } 01342
56

1 2 =+− xx  

s.reject thi so0but  ,
4

13
or  2 >−== xxx  

 

Now, 

( ) ( )

7

9

720
56

1
2

−=

−=f

 

B is the point 2,−
9

7

 

 
 

 

 
  

 

(1 mark) 
 

ii. B is a stationary point because at B, ( ) 0' =xf  

( ) ( )

( ) ( )

0                       

56

25
                      

5210827108
56

1
' ,3At 

0                       

56

17
                      

523634
56

1
' ,1At 

>

=

+−−==

>

=

+−−==

xfx

xfx

 

Since the gradient to either side of point B is positive but at point B the 

gradient is zero, there is a stationary point of inflection at B. 

(1 mark) 

(1 mark) for first derivative test 

 

e. Area of garden bed 

( )

( )∫

∫

−+−−−=

−=

4

0

234

4

0

1125218
56

1

 

dxxxxx

dxxf

 

(1 mark) – correct terminals 

(1 mark) – correct function 

 

(negative because the area falls below the x-axis) 

 
21 3
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f. i. The Fulton’s garden border is described by ( ) ( ){ }7252
56

1 3 −+−= xxy  so 

the George’s garden border is described by ( ) ( ){ }7252
56

1 3 −+−
−

= xxy . 

(1 mark) 

 

ii. Since C is the point ( )0,4  (from part a. ii.) [ ]4,0=gd . 

(1 mark) 

g. i.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1 mark) 

ii. The rule for the garden border in Fulton’s garden is given by 

( ) ( ){ }7252
56

1 3 −+−= xxy . 

When this function is reflected in the y-axis the rule becomes 

( ) ( ){ }7252
56

1 3 −−−−= xxy  

When this function is then dilated by a factor of 2 from the x-axis the rule 

becomes  

( ) ( ){ }

( ) ( ) ( ){ }7252
28

1
 So

7252
56

1

2

3

3

−−−−=

−−−−=

xxxh

xx
y

 

(1 mark) 

 

h. i. The function ( )xry =  is the inverse function of the function ( )xfy =  and 

vice-versa. 

(1 mark) 

 

ii. The coordinates of the point 







− 2,
7

9
 are 'B  because the coordinates of B are 

2,−
9

7

 

 
 

 

 
  from part d.i. 

(1 mark) 

 

Total 16 marks 

x

y

A
-2

-4

-4

C

B

Fulton’s backyardHill’s backyard
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Question 4 

 

a. Since [ ]1,1−=fd  and since the point A is at the right hand endpoint of the graph, 

x =1. 
( ) ( )

places) decimal 2 o(correct t 561

1tan1

⋅=

=f
 

A is the point ( )561,1 ⋅  

(1 mark) 

 

b. The function f is not defined for x = ±
π
2
, since an asymptote exists on the graph of 

( )
2

 and 
2

at  tan
ππ

=−== xxxy . 

Since 
π
2

=1 ⋅57..., this would be within 2km in the directions east and west of the 

intersection. 

(1 mark) 

 

c.         ( )xy tan=  

( )

( )

( )

1

1

1

0cos

1

0sec

0At    

sec

2

2

2

2

=

=

=

=

=

=

dx

dy

x

x
dx

dy

 

(1 mark) 

  

So at the point of intersection (i.e. ( )0,0 ), the gradient of the function )tan(xy =  is 1 

and so the rail line makes an angle of   45
�  or 

π
4
 with the road heading north (and of 

course with the road heading east). 

(1 mark) 
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d. At point B, 

dy

dx
=
4

3
 

Since point B lies on the main rail line, we have 

( )

( )

( )

( )

( )

( )

...
6

5
,

6

2

3
cos

4

3
cos

cos

1

3

4

sec
3

4
   So

sec   So

tan

2

2

2

2

ππ
=

±=

=

=

=

=

=

x

x

x

x

x

x
dx

dy

xy

 

Since [ ]
6

5
 then ...61792

6

5
 and 1,1

ππ
=⋅=−= xd f  is outside the domain. 

The value of x is 
π
6
. 

( ) ( )

3

1

6
tan

6

tan Since

=









=









=

ππ
f

xxf

 

So B is the point 
π
6
,
1

3

 

 
 

 

 
 .      (1 mark) 

e. The gradient of the shunting line is 
4

3
 and it passes through 

π
6
,
1

3

 

 
 

 

 
 . 

The equation of the shunting line is y −
1

3
=
4

3
x −

π
6

 

 
 

 

 
 .   (1 mark) 

The road running in the east-west direction is represented by the x-axis along which 

y = 0. 

...09050

4

3

6

3
3

2
4

3

2
4

3

3

63

4

3

1
0 So

⋅=

−=

−=

−=
−








 −=−

π

π

π

π

x

x

x

x

 

(1 mark) 

Since x > 0, the point of intersection occurs on the east side of the dangerous 

intersection.        (1 mark) 

(1 mark) 

(1 mark) 

(1 mark) 
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f. i. The curves with equations ( ) ( )xbayxy cos2 and tan −==  meet smoothly  

  at point C where x =
π
4
. 

This means firstly that at x =
π
4
 

( ) ( )

( )1                       1

2

1
21

4
cos2

4
tan is,that 

cos2tan

−−=

×−=








−=








−=

ba

ba

ba

xbax

ππ

 

Secondly, this means that if 

( )

( )

( )

( )xb
dx

dy

xbay

x
dx

dy

xy

sin2

cos2 if and

sec

tan

2

=

−=

=

=

 

At x =
π
4
, the gradients are equal    (1 mark) 

( ) ( )

( )
3              so

1     1 From

2

2

1
1

2

1

1

2

1
2

4
cos

1

4
sin2

4
sec is,that 

sin2sec        so

2

2

2

2

=

−=

=

÷=

=










×=

















=








=

a

ba

b

b

b

b

xbx

π

ππ

 

Have shown. 

(1 mark) 

ii. We are looking for the y-intercept of the graph of ( )xy cos223 −= . 

When x = 0, 

( )

metre)nearest   the(to metres 172

km...171570

223

0cos223

=

⋅=

−=

−=y

 

(1 mark) 

Total 15 marks 

(1 mark) 


