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2006 Mathematical Methods 3&4 
VCAA Sample Examination 1 

Suggested answers and solutions 
 
Question 1 

a Let y = 2 loge(x + 1) 

For the inverse x = 2 loge(y + 1) 

 x
2 = loge(y + 1) 

 y + 1 = e
x
2 

 y = e
x
2 − 1 

 f −1(x) = e
x
2 − 1 

b Dom of f −1(x) = range of f(x) 

 = R 

Note that the graph of f is a transformation of the 

graph of )(log xy
e

= , with a translation of 1 unit to 

the left and a dilation by a scale factor of two from 

the X axis. f therefore has the same range as 

)(log xy
e

= , i.e. R. 

 

Question 2 

a Let y = uv 

where u = 3x4 and v = tan x 

 du
dx = 12x3 and  dv

dx = sec2x 

 dy
dx = u dv

dx + v du
dx 

 = 3x4 sec2x + 12x3 tan x 

Alternatively,  
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 f (x) = logex − 2+ c 

 6 = loge1 − 2+ c 

 = loge1 + c 

                        c = 6 

 f (x) = logex − 2+ 6 

The rule of f is 6)2(log)( ++!= xxf e . 
Alternatively, 6)2(log)( +!= xxf e  
 

Question 3 

 tan (x) = 3 

 x = 
−2π

3 , 
π
3 

 

Question 4 

a Amplitude = 3 

 Period = 
2π
2  = π 

b Endpoints: When x = π, 

 f(x) = 3 sin  2 π + 
π
3  

 = 3 sin 
8π
3  

 = 3 sin 
π
3 

 = 3 3
2  

Since the period is π; 





−π, 3 3
2 , 





0, 3 3
2  and 







π, 3 3
2  are points on the graph. 
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x 

y 

0 2 −2 

 
x axis intercepts: When y = 0, 

3 sin  2 x + 
π
3  = 0 

 sin  2 x + 
π
3  = 0 

 2 x + 
π
3  = −π, 0, π, 2π 

x + 
π
3 = 

−π
2 , 0, 

π
2, π 

x = 
−5π

6 , 
−π
3 , 

π
6, 

2π
3  

             
Question 5 

a Pr(X > 4) = 0.5 

b Pr(X > 5) = Pr(X < 3) 

 = Pr Z < 
3 − 4

2  

 = Pr 1

2
Z
! "

< #$ %
& '

 

 b = 1

2
!  

Alternatively 
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Question 6 

a 
2

0
( )f x!  dx = 1 

 ⌡⌠
0
 2 ax(2 − x) dx = 1 

 a ⌡⌠
0
 2 2x − x2 dx = 1  

 a [ ]x2 − 13 x3  
0

2
 = 1 

 a [ ]22 − 13 × 23  = 1 

 4
3 a = 1 

 a = 34 

b Pr( )X < 12  = 34 ⌡
⌠

0

 12 x(2 − x) dx 

 = 34 [ ]x2 − 13 x3  
0

1
2 

 = 34 



( )1

2
2
 − 13 × ( )1

2
3

 

 = 34 × 5
24 

= 5
32

 

  

Question 7 

a          

 

 

 

 

b Area = ⌡⌠
−2
 2 x2 − 4− (x2 − 4) dx 

 = −2 ⌡⌠
−2
 2  x2 − 4 dx 

 = −2 [ ]1
3 x3 − 4x  

−2

2
 

 = −2  
( )8

3 − 8  −  
−8
3  + 8  

 = 64
3  

x 

( 
5π
12 , −3) 

(π, 3 3
2  ) 

(−π, 3 3
2  ) 3 3

2  

( 
−7π
12  , −3) 

( 
−π
12 , 3) 

2π
3  

π
6 −π

3  −5π
6  

0 

y 

( 
11π
12  , 3) 
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Question 8 

a g (f (x)) = loge(x2 + 1) 

b g′ (f (x)) = 1
x 2 + 1 × 2x 

 = 2x
x 2 + 1 

c ⌡
⌠ x

x 2 + 1 dx = 12 ⌡
⌠ 2x

x 2 + 1 dx 

 = 12 ⌡⌠g′ (f (x)) dx 

 = 12 g (f (x)) + c 

 = 12 loge(x2 + 1), if c = 0 

Alternatively, the antiderivative may be expressed as 
cx

e
++ )1(log 2 . Any real value of c may be used as 

the question asks for an antiderivative. 

Question 9 

For the curve, dy
dx = 4x3 

At the point of intersection of the curve and the 

tangent, dy
dx = 4 

 4x3 = 4 

 x3 = 1 

      x = 1 

For the tangent, when x = 1, y = 3. 

At the point (1, 3) on the curve, 

 y = x4 + c 

becomes 3 = 14 + c 

 c = 2 

Question 10 

Required to find  dh
dt   when h = 3. 

 dh
dt  = dh

dV × dV
dt  1  

Given  dV
dt  = 3 2  

For a cone, V = 13 πr 
2h 

and  rh = 24  so r = 12 h 

Area between the curves is 64
3

 units2 

therefore          V = 13 π × ( )1
2 h 2

 × h 

 = 
πh3

12  

 dV
dh = 

πh2

4  

 dh
dV = 4

πh2
 

Using 1  and 2  

 dh
dt  = 4

πh2 × 3 

 = 12
πh2 

When h = 3, dh
dt  = 12

π × 32 

 = 4
3π 

The water is rising at  4
3π  m/min when the depth 

is 3 m. 

 

Question 11 

       
Pr(‘no snow’ on Saturday) 

 = Pr(‘snow’ on Friday and ‘no snow’ on 

Saturday) + Pr(‘no snow’ on Friday and 

‘no snow’ on Saturday) 

 = 0.6 × 0.4 + 0.4 × 0.9 

 = 0.24 + 0.36 

 = 0.6 

 

END OF PAPER 

 

 

Friday Saturday Thursday 

S 

S′ 

S 
S 

S S′ 

S′ 0.6 

0.6 

0.4 

0.4 
0.1 

0.9 
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2006 Mathematical Methods 3&4 CAS 
VCAA Sample Examination 2 – Section 1 

Suggested answers and solutions for Multiple-choice questions 
 

1 A 2 C 3 A 4 A 5 D 

6 A 7 B 8 A 9 D 10 A 

11 A 12 D 13 E 14 A 15 C 

16 C 17 A 18 B 19 B 20 A 

21 C 22 E       

 

1 Average value = 1
π − 0 ⌡⌠0

 π sin (x) dx 

  = 
−1
π  [cos (x)]

π
0 

  = 
−1
π  (cos (π) − cos (0)) 

  = 2π       A 
 
2 (m − 2)x + 3y = 6 1  

 2x + (m + 2)y = m 2  

2 × 1  − (m − 2) × 2  
 6 − (m − 2)(m + 2)y = 12 − m(m − 2) 

 y = 
12 − m(m − 2)

6 − (m − 2)(m + 2) 

  = 
12 − m2 + 2m

10 − m2  

There is a unique solution if 10 − m2 ≠ 0, i.e., m ∈ R \ {− 10, 10 }.   C 
 
3 If p + 3 > 3, then 
 p + 3 > 3 when p + 3 is non-negative 1  

and −(p + 3) > 3 when p + 3 is negative 2  

From 1 , p > 0, and from 2 , 
 p + 3 < −3 
 p < −6 

Hence for p + 3> 3, p > 0 or p < −6      A 
 
4 From the matrix equation, x′ = x + 3 and y′ = 2y + 2 

 Therefore x = x′ − 3 and y = 
y′ − 2

2  

 So y = x2 becomes 
y − 2

2  = (x − 3)2 
  y = 2(x − 3)2 + 2      A 
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5 This question is intended for graphics calculator use, but the analytical solution is provided here for 
information. 

 h = 0.5





1 − e−0.05t cos



3πt

2  

 dh
dt  = 0.5





0 + 0.05e−0.05t cos



3πt

2  + 
3π
2  e−0.05t sin



3πt

2  

  = 0.025e−0.05t cos



3πt

2  + 
3π
4  e−0.05t sin



3πt

2  

 When t = 2.5, dh
dt  = 0.025e−0.125 cos



15π

4  + 
3π
4  e−0.125 sin



15π

4  

  = 0.025e−0.125 × 1
2
 + 

3π
4  e−0.125 × 

−1
2
 

  = −1.45, correct to two decimal places   D 
 

6 Average rate of change = 
N(10) − N(0)

10  

  = 
1000e − 1000

10  
  = 172, to the nearest integer    A 
 
7 y = ax3 + bx2 + cx + d 
 The graph intersects the y axis at 24, so d = 24. 
 From the shape of the graph, a is positive, so B is the answer.    B 
 
8 f (x) = e2x 
 [f (x)]2 = [e2x]2 
  = e4x 
  = e2(2x) 
  = f (2x) 
  = f (y) where y = 2x     A 
 

9 The graph shown could have rule y = x
1
3.       D 

 
10 For f (x) = loge (x2) + 1, x2 must be greater than 0, so x ∈ R\{0}.    A 
 
11 f (x) = 2x3 − 3x2 + 6 
 f′ (x) = 6x2 − 6x 

The graph has turning points where f′ (x) = 0, 
 6x2 − 6x = 0 
 6x(x − 1) = 0 
 x = 0 or 1 

For an inverse to exist, the graph must be one-to-one, and since the domain of f is given as [a, ∞) the 
domain must be [1, ∞), or a subset of this. Hence a ≥ 1 is the answer.   A 

 
12 For ⌡⌠0

 t f (x) dx > 0, t > 0, so t ∈ (0, b] only.      D 
 

13 δx→0
lim  

i = 1
Σ
n

(xi δx) = n→0
lim  

b − a
n

i = 1
Σ
n

(xi) 

  = ⌡⌠a
 b x dx 
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  = ⌡⌠0
 4 x dx 

  = 12 [x2] 
4
0 

  = 12 (16 − 0) 
  = 8       E 
 
14 y =sin (x), π< x < 2π 

is equivalent to y =−sin (x), π< x < 2π 

 dy
dx = −cos (x) 

When x = k, dy
dx = −cos (k)       A 

 
15 Since the gradient is zero at x = 2, and negative both to the immediate left and right of x = 2, there is a 

stationary point of inflection at x = 2.       C 
 
16 The graph of the function with equation y = f (x) is transformed into the graph of the function y = g (x) 

by a dilation of scale factor 2 from the x axis and a reflection in the x axis.  C 
 

17 For the curve with equation y = 2x
3
2, when x = 4, y = 16. 

 dy
dx = 3x

1
2 

The gradient of the curve when x = 4 is 6, so the gradient of the normal to the curve is 
−1
6 . 

The equation of the normal to the curve at the point (4, 16) is 

 y − 16 = 
−1
6  (x − 4) 

 y = 
−1
6  x + 50

3       A 
 
18 The function y = f (x) has positive gradient, increasing from left to right.  B 
 

19 Pr(X > 15) = Pr



X − µ

σ  > 
15 − µ
σ  

  = Pr





Z > 
15 − 12.2

1.4  
  = Pr(Z > 2)      B 
 
20 The distribution associated with this is Binomial with p = 0.15. 
 Pr(X ≥ 1) > 0.95 
 1 − Pr(X = 0) > 0.95 
 Pr(X = 0) < 0.05 

 


n

0 p0(1 − p)n < 0.05 
 (1 − 0.15)n < 0.05 
 0.85n < 0.05 
 loge 0.85n < loge 0.05 

 n loge 0.85 < loge 0.05 

 n > loge 0.05
loge 0.85 

The smallest value n can take is 19.       A 
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21 Pr(2 families have the same number of children) 
 = Pr(both have 0 children) + Pr(both have 1 child) + Pr(both have 2 children) + Pr(both have 3 

children) 
 = Pr(X = 0) × Pr(X = 0) + Pr(X = 1) × Pr(X = 1) + Pr(X = 2) × Pr(X = 2) + Pr(X = 3) × Pr(X = 3) 
 = 0.4 × 0.4 + 0.3 × 0.3 + 0.2 × 0.2 + 0.1 × 0.1 
 = 0.16 + 0.09 + 0.04 + 0.01 
 = 0.30          C 

22 Pr(X > a) = ⌡
⌠

a

 π
 12 sin (x) dx 

  = 
−1
2  [cos (x)]

π
a 

  = 
−1
2  (cos (π) − cos (a)) 

  = 
−1
2  (−1 − cos (a)) 

  = 12 (1 + cos (a)) 
When Pr(X > a) = 0.25, 

 1
2 (1 + cos (a)) = 0.25 

 1 + cos (a) = 0.5 
 cos (a) = −0.5 

 a = 
2π
3  ≈ 2.09      E 
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2006 Mathematical Methods 3&4 CAS 

VCAA Sample Examination 2 – Section 2 
Suggested answers and solutions for Extended-response questions 
 
CAS may be used but is not essential to complete 

most questions. 

Question 1 

a i f′ (x) = 3ax2 + 2bx + c 

When x = 1, f (x) = 1 and f′(x) = 0, 

∴ 1 = a + b + c + 2 1  

and 0 = 3a + 2b + c 2  

2  − 1  gives b = 1 − 2a 3  

Sub 3  in 1 : a = c + 2 4  

Sub 4  in 1 : b = −2c − 3 5  
 

ii If f (2) = 0, 0 = 8a + 4b + 2c + 2 

Substituting 4  and 5  into the above 

equation yields c = −3. 
 

b i f′ (x) = 3x2 − 8x + 5 
 

ii Let f′ (x) = 0, 0 = 3x2 − 8x + 5 

∴ 0 = (x − 1)(3x − 5) 

∴ x = 1 or  53 

f (1) = 1, f 


5

3  = 23
27, ∴ m = 1, n = 53 

iii 

 
Absolute maximum value of function is 1. 

Absolute minimum value of function is −1. 

 

iv 

 
From the graph, f (x) = p has one solution 

where p ∈ [−1, 23
27 ). 

 

c i The graph of y = f (x) is transformed into 

the graph of y = f 


x

k  − 1 by a dilation of 

factor k from the y axis, and a translation of 

1 unit in the negative direction of the y 

axis. Order is not important. 

 

ii For f (x) − 1 = (x − 1)2(x − 2), the x-axis 

intercepts are at x = 1 and x = 2. 

The graph of y = f 


x

k  − 1 is the graph of 

y = f (x) − 1 dilated by a factor of k from 

the y axis, therefore the x-axis intercepts 

are x = k and x = 2k. 

x 

 y 

0 

−1 

( 53, 23
27 ) 

23
27 

 y = f (x) 

(2, 1) 

x 

 y 

(0, −1) 

0 

(1, 1) (2, 1) 

 y = f (x) 
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Question 1, continued... 

c iii For f (x) = 1, 

 f (x) − 1 = 0 

∴ (x − 1)2(x − 2) = 0 

∴ x = 1 or 2 

For f (x + h) = 1, it follows that x = 1 − h 

or x = 2 − h, since the graph of y = f (x + h) 

is a translation of h units in the negative 

direction of the x axis of the graph of 

y = f (x). For only one solution to be 

positive, 1 − h ≤ 0 

∴ h ≥ 1 

and 2 − h > 0 

∴ h < 2 

Therefore 1 ≤ h < 2. 

 

Question 2 

a At (2, 3), 3 = (2 × 22 − 3 × 2)e2a 

∴ 3 = 2 e2a 

∴ e2a = 32 

∴ 2a = loge 


3

2  

∴ a = 12 loge 


3

2  
 

b i At the point A, y = 0, 

∴ (2x2 − 3x) eax = 0 

∴ x(2x − 3) = 0 

∴ x = 0 or  32 

At the point A, x = 32 . 
 

ii Area of lake = − 
⌡

⌠

0

 3
2(2x2 − 3x) eax dx 

∴ − 
⌡

⌠

0

 3
2(2x2 − 3x) eax dx = 10 

Using CAS, a = 2.474, correct to 3 d.p. 

c When a = 1, y = (2x2 − 3x) ex 

∴ dy
dx = (2x2 + x − 3) ex 

When  dy
dx = 0, 0 = 2x2 + x − 3 

∴ 0 = (x − 1)(2x + 3) 

∴ x = 1 or − 32 

When x = 1, y = −e 

∴ B = (1, −e). 

d i When x = 0, y = 0 and  dy
dx = −3. 

∴ equation of tangent is y = −3x. 

ii Find the point of intersection of the two 

graphs, 

i.e. let (2x2 − 3x) ex = −3x 

Using CAS, x = 0 or 0.874 217... 

When x = 0.874 217..., y = −2.622 65... 

∴ D = (0.87, −2.62), correct to 2 d.p. 

 

Question 3 

a From the transition matrix, 

Pr(hunts on north side next night) = 45 . 

b 









2

5
4
5

3
5

1
5

 

3

 



1

0
 = 








68

125
57
125

 

Pr(north side on Thursday) = 68
125 or 0.544. 

c Use CAS to consider large powers. 









2

5
4
5

3
5

1
5

 

30

 



1

0
 ≈ 



0.571 429

0.428 571
 

 









2

5
4
5

3
5

1
5

 

40

 



1

0
 ≈ 



0.571 429

0.428 571
 

The fox will hunt on the north side of the 

creek on 57% of the nights. 
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Question 3, continued... 

d Pr(fox spends longer than 3 hours hunting) 

 = 3
32 ⌡⌠

3

 4 t (4 − t) dt 

 = 5
32  (using CAS) 

 

e Binomial, n = 3, p = 5
32 

 Pr(X ≥ 2) = 


3

2 



5

32
2




27

32
1
 + 


3

3 



5

32
3




27

32
0
 

 = 0.066, correct to 3 d.p. 

 

f 3
32 ⌡⌠

3

 T t (4 − t) dt = 0.104 

Using CAS, T = 0.8 hours 

 = 0.8 × 60 minutes 

 = 48 minutes 

∴ n = 48. 

 

 

Question 4 

a              Range of h(t) = [−60 + 62, 60 + 62] 
                           = [2, 122] 

∴Maximum height = 122 
 

b     From above 

    Minimum height = 2 

c          Period = 2π ÷ 
5π
2  

 = 2π × 2
5π 

 = 0.8 hours 

 = 0.8 × 60 minutes 

 = 48 minutes 

P returns to its lowest point at 1.48 pm. 

d i 92 = 62 + 60 sin 



(5t − 1)π

2  

∴  sin 



(5t − 1)π

2  = 12 1  

∴  
(5t − 1)π

2  = 
π
6  (1st positive solution) 

∴  5t − 1 = 
π
6 × 2π = 13 

∴  t = 4
15 hour 

 = 4
15 × 60 minutes 

 = 16 minutes 

P reaches a height of 92 m at 1.16 pm. 

 

ii From 1  above, the 2nd positive solution is 

  
(5t − 1)π

2  = 
5π
6  

∴  5t − 1 = 
5π
6  × 2π = 53 

∴  t = 8
15 hour 

 = 8
15 × 60 minutes 

 = 32 minutes 

P is above 92 m from 1.16 pm to 1.32 pm, 

i.e. for 16 minutes during one rotation. 

 

e i h′ (t) = 60 × 
5π
2  cos 



(5t − 1)π

2  

∴  h′ (t) = 150π cos 



(5t − 1)π

2  

or h′ (t) = 150π sin 



5π t

2  2  

 

ii When t = 1, from 2  above, 

 h′ (t) = 150π sin 



5π

2  

 = 150π  m/h 
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Question 4, continued... 

f i 

 

  

ii Use addition of ordinates to draw the 

graph of y = s (t) for t > 0.4. 

 

 
 

iii When the spider reaches the ground, s (t) = 0 

∴ 62 + 60 sin 



(5t − 1)π

2  − 300 (t − 0.4) = 0 

Using CAS, t = 0.603, correct to 3 d.p. 

The spider leaves car C when t = 0.4. 

The spider reaches the ground after 

(0.603 − 0.4) hours = 0.203 hours 

 = 0.203 × 60 minutes 

 = 12.18 minutes 

It takes the spider 12 minutes to reach the 

ground. 

 

END OF PAPER 
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 y 
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 y = s (t) 
122 

0.4 

(0.4, 122) 

t 

 y 
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(0.4, 122) 

 y = h (t) 
120 

 y = −300(t − 0.4) 
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