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Question 1   C 

 

x − 5 2x + 2
2

         2x −10

              + 12

= 2 +
12

x − 5

 

  

Question 2   B 
P(−1) = 1−1+ a − b + 30 = 0

⇒ a − b = −30             (1)

P(2) = 16 + 8+ 4a + 2b + 30 = 0

⇒ 4a + 2b = −54         (2)

(1) × 4→ 4a − 4b = −120     (1a)

(2) −  (1a)→ 6b = 66

b = 11

Substituting b = 11 in (1)

a −11 = −30

a = −19

  

 Question 3   B 

To have an inverse that is a function f (x)  must 

be a  

one-to-one function.  In the domains given, the 

only 

function that is one-to-one is f (x) = x3 − x   
 

 

 

Question 4   D 

The basic graph of log e(x) which passes through

 the point (1,0) and has an asymptote x = 0 is 

translated a  units to the right and b  units up, to 

pass through the point (a +1,b). The asymptote is

translated a  units to the right to become the 

vertical line x = a
 

Question 5   E 

3sin
3π
2
x







cos
3π
2
x







= −1         0 ≤ x ≤ 2

3 tan
3π
2
x






= −1         0 ≤

3π
2
x ≤ 3π

tan
3π
2
x






= −

1

3

3π
2
x =

5π
6
,
11π
6
,
17π
6

3πx =
5π
3
,
11π
3
,
17π
3

x =
5

9
,
11

9
,
17

9

Sum =  
5

9
+
11

9
+
17

9
=
33

9
=
11

3

 

   

Question 6   A 

Domain of f (x) is R
+ ∪ {0}

Range of f (x) is [1,∞)

Domain of f −1(x)= range of f (x)

∴Domain of f −1
(x) is x ≥ 1
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Question 7   E 

This graph is translated 2 units to the right and 3 

units up, 

so maximum at (−1 + 2, 16 + 3) i.e.(1,19) 
minimum at (3 + 2, −16 + 3) i.e. (5, −13) 
                    

          

Question 8   C 

X intercept when y = 0

3log3 (x + 2) −1 = 0

3log3 (x + 2) = 1

log3 (x + 2) =
1

3

x + 2 = 3
1

3 = 33

x = 33 − 2

  

Question 9   C 
 

dy

dx
= −6cos(2x)

This cos graph has a maximum of 6 and a

 minimum of -6

 

 

Question 10   A 
Product rule

′f (x) = x 4(−3e−3x ) + e−3x × 4x3

= x3e−3x(4 − 3x)

  

 
 

Question 11   E 

dy

dx
=
(x

3 + 2)4 x − 2x2 (3x2 )
(x3 + 2)2

= 0 (Quotient rule)

4 x
4 + 8x − 6x 4

(x3 + 2)2
= 0

8x − 2x 4

(x3 + 2)2
= 0

8x − 2x 4 = 0

2x(4 − x3 )= 0

x(4 − x 3) = 0

 

Question 12   C 
Chain rule

dV

dx
=
dV

dy

dy

dx

dV

dy
= 5(2y− 3)4 × 2 = 10(2y − 3)4

dy

dx
= 2(2x − 3) × 2 = 4(2x − 3)

dV

dx
=10(2y− 3)4 × 4(2x − 3)

= 40(2y− 3)4 (2x − 3)

 

Question 13   E 

f (x) = (3 − x)(5− 2x)dx∫
= (15 − 6x − 5x + 2x2 )dx∫
= (15 −11x + 2x 2 )dx∫

= 15x −
11x

2

2
+
2x

3

3
+ c

66 = 90 −198 + 144 + c

66 − 36 = c

c = 30

f (x) =
2x 3

3
−
11x2

2
+ 15x + 30

 

Question 14   A 

Area = (4ax − ax2 )dx
0

4

∫

= [2ax2 −
ax 3

3
]0
4

= (32a −
64a

3
) − 0

=
96a

3
−
64a

3

=
32a

3
=10

2

3
a
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Question 15   E 

A = [ f (x) − g(x)]dx
−1

2

∫  

 

Question 16   A 

A =
2x

2

x
dx −

1

x
dx +

1

x − 2∫∫∫ dx

= x2 − log e(x) + log e(x − 2)

= x2 + log e
x − 2

x







 

Question 17   B 

 

A =
1

2
[( f (0) + f (1)) + ( f (1) + f (2)) +

( f (2) + f (3)) + ( f (3) + f (4))]

=
1

2
f (0) + f (1) + f (2) + f (3) +

1

2
f (4)

=
1

2
+ 31 + 32 + 33 +

1

2
× 34

=
1

2
+ 3+ 9 + 27+

81

2

= 80

 

 

 

 

 

 

Question 18   E 
2y = x − 6

⇒ y =
1

2
x − 3

m =
1

2

gradient of perpendicular line × m = −1

gradient of perpendicular line = -2

y = −ax − b

∴a = 2

y = −2x − b

When x = 4,y = −1

−1= −8 − b

−b = 7

b = −7

 

Question 19   E 

f (x + h) ≈ f (x) + h ′f (x)

f (x + 0.2) ≈ f (x) + 0.2 × ′f (x)

f (x) = SA = 6x2

′f (x) = 12x

∆SA = f (x + 0.2) − f (x) ≈ 0.2 × ′f (x)

= 0.2 ×12x

When x =10

∆SA = 0.2× 12 ×10 = 24 cm2

 

Question 20   A 

x
2 − 2x + 3 = Ax2 + 2A+ Bx2 + Bx +Cx +C

x2 − 2x + 3 = (A + B)x2 + (B +C)x + (2A+ C)

Equating coefficients

A + B =1      (1)

B +C = -2     (2)

2A +C = 3     (3)

(2) − (1)→ C − A = −3

∴−2A+ 2C = −6    (4)

(4) + (3)→ 3C = −3

⇒C = −1
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Question 21   C 
The domain is R and the range is [2,∞).

This is the graph of y = x3  translated 3 units to 

the right and 2 units up, so local minimum 

is (3,2). The dilation is by a factor of 4 parallel 

to the y axis.

 

Question 22   A 
Vertical asymptote when 2x − 4 = 0

⇒ x = 2

Graph of y =
5

2x − 4
 is moved 3 units up by + 3

so the horizontal asymptote is y = 3

 

 

Question 23   E 

Pr =
17

17 + 23
=
17

40
 

 

 

 

 

Question 24   A 

 

 

For A,  when x = 0,Pr =
1

4

When x =1,Pr =
3

4

Pr∑ =
1

4
+
3

4
= 1

∴  this is a probability function.

 

Question 25   B 
Hypergeometric

σ = n
D

N
1−
D

N






N − n
N −1







D = 8,N = 18,n = 5

σ = 5 ×
8

18
1 −

8

18






18 − 5

18 − 1






= 0.97

 

 

Question 26   A 

Binomial with n =10, p =
1

6
, x = 9 or 10

Pr(X = 9) + Pr(x = 10)

=
10

 9







1

6






9
5

6






1

+
10

10







1

6






10
5

6






0

=
10

 9






1

6







9
5

6






+
1

6







10
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Question 27   E 

 

 

 

 

 

 

 
Pr(90 − a < X < 90 + a) = 0.82

Pr(X < (90 + a)) − Pr(X < (90 − a)) = 0.82

Pr(X < (90 + a)) − Pr(X > (90 + a)) = 0.82

Pr(X < (90 + a)) − (1− Pr(X < (90 + a)) = 0.82

2 Pr(X < (90 + a))−1 = 0.82

2 Pr(X < (90 + a)) =1.82

Pr(X < (90 + a)) = 0.91

Z =
x − µ
σ

=
90 + a − 90

2.5
=
a

2.5

Pr(Z <
a

2.5
) = 0.91

a

2.5
= 1.341

a = 2.5 ×1.341= 3.3525

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

0.82 

90 − a 90 + a 

90  

5.2=σ  
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Question 1    

a. & c. 

 

 

 

 

 

 

 

 

                                                 

                                          (1 mark for graph a.) 

                                          (1 mark for graph c.) 

 

 

b. Range of f (x) is [1,55]          (1 mark)  

Question 2    

a. 

g(x) = 2[x2 − 6x +
31

2
]

= 2[x2 − 6x + 9 − 9+
31

2
]      (1 mark)

= 2[(x − 3)2 −
18

2
+
31

2
]

= 2[(x − 3)2 +
13

2
]

= 2(x − 3)2 +13                     (1 mark)

 

                                      

 

 

b. 
f (x) is translated 3 units to the right parallel 

to the X  axis            (1 mark)

f (x) is translated 13 units up  parallel 

to the Y  axis            (1 mark)

f (x) is dilated by a factor of 2  parallel 

to the Y  axis            (1 mark)

 

 

Question 3  

a. 
When x = 0, y = 0   (0,0)         (1 mark)

When x = −2,y = 4e−2    (-2,4e−2 )         (1 mark)
 

 

b.  

dy

dx
= x2ex + ex × 2x = 0 for tangents that are

 horizontal.                         (1 mark)

∴ xex(x + 2) = 0

⇒ x = 0 or x =  -2,   ex > 0 for all x   (1 mark)

 

 

 

 

 

Question 4    

a. 

sin(2πx)(2 cos(2π x) + 3) = 0      (1 mark)

sin(2πx) = 0 or 2 cos(2πx) = − 3    0 ≤ x ≤ 2

sin(2πx) = 0 or cos(2πx) = −
3

2
      0 ≤ 2πx ≤ 4π

2πx = 0,π ,2π ,3π, 4π  or 2πx = π −
π
6
,π +

π
6
,

3π −
π
6
, 3π +

π
6
                            (1 mark)

2x = 0,1,2,3,4 or 2x =
5

6
,
7

6
,
17

6
,
19

6
  

x =   0,
1

2
,1,
3

2
, 2,

5

12
,
7

12
,
17

12
,
19

12
        (1 mark)

 

 

ƒ(x) 

X 0 

(0,1) 

(1,0) 

(3,55) 

(55,3) 

)(xf  

)(1 xf −  
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Question 5   

 

loga (x
2
) + log a(5) = loga (a) + loga(8x − 3a)

loga (5x
2 ) = loga (a(8x − 3a))        (1 mark)

5x
2 = 8ax − 3a2

5x2 − 8ax + 3a2 = 0                       (1 mark)

x =
8a ± 64a2 − 60a2

10

x =
8a ± 4a

2

10

x =
10a

10
 or 

6a

10

x = a  or 0.6a                           (1 mark)

 

Question 6  

 

a. 

Hypergeometric

N = 20,D = 4,n = 6   x ≥ 1

Pr(X ≥ 1) =1− Pr(X = 0)          (1 mark)

= 1 −

4

0






16

 6







20

 6








= 0.7934                 (1 mark)

 

b. 

Pr  not defective and defective and not defective

and defective =
16

20
×
4

20
×
16

20
×
4

20
= 0.0256

                                                    (1 mark)

c. 
Pr  rejects =  Pr(X ≥ 1) =1− Pr(X = 0)

= 1 −
4

0






4

20







0
16

20







4

=1 −
16

20







4

Pr  accepts batch =1 − Pr  rejects 

= 1 − 1 −
16

20






4











=
16

20







4

= 0.4096

 

 

 

END OF SUGGESTED SOLUTIONS 
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