MAV Mathematical Methods Trial Examination 1, 2003

Multiple Choice Questions

Question 1

The function f(x) = 3 cos(4(x — w)) has a period and amplitude respectively of

A 3 %

B %,

C 3,%

D g 3

E 47,3
Question 2

The solution(s) of sin(2x) = cos(2 — x), x € [0, «t] is/are closest to
A 119,328
1.19

B

C 119,278
D 1.19,3.28,5.38,5.83
E

2.78

Question 3
J'Og (asin(6) + bcos(8))d6 equals
A %(351 ++/3b)
B %(351 NET
C %(a ++/3b)
D %(a —\/3b)

E %(«@b—a)
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Question 4

The value of cos (n + x) + sin(

A =wn+07

B n-07

c -14

D 0

E 1.4
Question 5

The coefficient of the term containing x° in the expansion of (a — x3)° is

A 4

B ad

C 1042

D -1043

E 1043
Question 6

T x
2

) when cos(x) = 0.7 is

If logz(x —2) + logs(x) — 1 = 0 then x equals

A -1

B 1

cC 3

D -lor3

E -3orl
Question 7

1
If 2¢* — 1 = — then x equals
e

A —% orl
B O
c 1
D loge%
1
E logeE orl
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Question 8

22% 4+ 2% + b = 0 has only one real solution if

A b>0
B b<0
C b<0
1
D b—Zonly

E b:—% only

Question 9

The range of f: (3, o) R, where f(x)=2+5x—3 + 61is

A (6,)
3
B [g, °°)
C R
D (4V3+6, )
E  [4V3+6,)
Question 10

The graph of y = x3* + 1 is translated —1 unit parallel to the x-axis and then dilated by a factor of
2 from the x-axis. The equation of the new graph is

A y=2(x+1)3%x+D 42

B y=2(x+1)7%x+D 41
C y:(%x+1)3e(%x+1)+1
D y=2(x—1)3e(x‘1)+2
E y=%(x+1)3e(x+1)+%
Question 11
If  R\{2}> R, f(x) = 2T5x + 3 then the largest possible value of 2 where
g: (=0, 2)— R, g(x) = f(2x) is a one to one function is
A 2
B -1
c 1
D 2
E 3
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Question 12

The function f defined by f: R — R, where f(x) = -2~ 1) + 4 will have an inverse function with

A two asymptotes.

B only one asymptote, y = 4 and only one intercept, (0, 4 — iz).
e
C  only one asymptote, x = 4 and only one intercept, (4 - lz' 0).
e

. 1 1
D  only one asymptote, y = 4 and intercepts at (0, 4 - 6—2) and (E log.(4) +1,0).

. 1 1
E  only one asymptote, x = 4 and intercepts at (4 — e—z, 0) and (0, > log,(4) +1).

Question 13

The rule for the above graph could be

A y= (x:la)z +b
-1

B y= (x—a)2 -b

C y= (x_la)z +b

D y= (x-_i-la)2 b
-1

E /= (x+a)2 -b
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Question 14

The equation of the graph of the quartic function which passes through the points with coordinates
(_1/ O)/ (0/ 1)/ (1/ 0)/ (2/ 9) and (_2/ 9) is

A y=x-2:3+1

B y=(x-1)2%x+1)?

C y=-x*+x2+2x-2

D y=—-(x+1)x-1)3

E y=-(x-1x+1)3
Question 15

The largest instantaneous rate of change, correct to three decimal places, of the function
f(x) = (2x + 1)10* with respect to x where 2x + 1 = 10¥ is

A 4303

B 4.302

Cc 2719

D 0

E -0.125
Question 16

If h(x) and g(x) are the tangents to the curve f(x) = x% + 4x — 5 where f(x) =0, then
h(x) = g(x) at

A (2,-18)
B (-2,-9)
C (-51)
D (-5 -6)
E (-66)
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Question 17
If o(x) = 198¢(COD) o o7(x) equal
800 =" en g’(x) equals

tan? (x) — sec? (x) log, (cos x)

A
tan? (x)
B tan? (x) + sec? (x)log, (cos x)
tan? (x)
C — tan? (x) + sec? (x)loge (cos x)
tan? (x)
D -1- log, (cos x)
sinz(x)
E - log, (gos x)
tan“ (x)
Question 18
An approximate value for 1 s
v99.96
1 -1
A E+O'O4X—ZOOO
1 -1
B 10—0.04>< 2000
1 -1
C E —-0.04 x 2—0
1 -1
D E +0.04 x 2—0
1 -1
Question 19

If f(x) = (x - 3)%x and F is a function such that /’(x) = f(x), then the largest subset of R for which the
gradient of /(x) is negative is

A (=200 UG )
(—e=, 0)

(1,3)

(o0, 1) U (3, o)
(0,3) U (3, )

m g N «w
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Question 20

Which of the following rules for f(x) will not give an overestimate of the area bounded by the
graph of f(x) and the x-axis, if the right rectangle rule is used between x = 0 and x = 3 using strips
of width 0.5?

A flx)=10%

B fix)=¢*

C flx)=+x

D fi)=(-3)@3-1)

E  flx)=-x*(x+1)(x +2)
Question 21
An antiderivative of Z)Lx5 could be

x° +7

A log, (x6 +7)
B 4log,(x® +7)

C  2log,(x%)
3
3 6
D > loge (x° +7)
2 6
E gloge(x +7)+3

Question 22

3
It IZ a(2x — 3)4 dx = 10, where a is a constant, then a equals
1

A -100
B 50
c 1

D 50

E 100
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Question 23

a\/b c

The area enclosed by the graph y = f(x) shown above and the x-axis can be determined by evaluating

A [ s bc F(x)dx

ob b
B f(x)dx+ | f(x)dx

C , f(x)dx—‘b f(x)dx

0 eC

D ) f(x)dx + J, f(x)dx

ra

~b c
E Fodx+ | Fx —J Fx)dx
0 J0 b

Question 24

X is a normally distributed variable with y = 3 and 62 = 2.56.
If Pr(X < k) = 0.734, then k equals

A 02
B 14
c 20
D 40
E 46

© The Mathematical Association of Victoria Page 8



MAV Mathematical Methods Trial Examination 1, 2003

Question 25

A fire alarm has a probability of failure of 0.05. In an apartment block where there are 10 such
alarms. The probability that at least one fails is given by:

A 1-(095)10

B 1-10C,(0.05)(0.95)°
C 1-[19C,(0.05)'(0.95)% + (0.95)19]
D 1-[19C4(0.05)°(0.95)! + (0.05)!0]
E 1-(0.05

Question 26

In a container of tulip bulbs there are 5 that have red flowers, 7 yellow and 3 orange. A group of
three bulbs is chosen at random. The probability that exactly one of the flowers is orange is:

1
A 5
2
B 5x14x13
2x3
¢ 5x14x%x13
12x11x 3
D 5x14x13
E 12x 11
5x14x%x13
Question 27

A normal distribution has u = 5.6 and o = 6.5. If the variable x, has a value of 1.2, the value of the
normal variable z, is closest to:

A 0338
B -0.786
Cc -0.677
D 0.677
E -440
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Part II: Short Answer

Question 1

Find exact solutions of 1 + sin(x) = 2cos?(x) where x € [0, 27].

4 marks
Question 2
The graph of f: [-1, «)— R, f(x) = Vx + 1 — 3 is shown below.
y
2
X
-6 4 -2 0 2 4 () = Jir1-3
—4

a Sketch g: (—e<,3) > R, g(x) = 3e(*=2) — 3 on the above axes, labelling all relevant features of the
graph.

b  Find the coordinates of the points where f(x) = g(x), correct to two decimal places.

¢ Find the area bounded by the two curves, correct to two decimal places.

3 +2+2=7marks
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Question 3

Let f(x) = 2x - 1)3(x + 2).
a Find f’(x).

b  Hence show that the stationary points occur at x = % and x = —18—1.

¢  Find the average rate of change of f(x) between the two stationary points.

1+ 2 + 3 = 6 marks

Question 4

., dy
a Ify=x?log,x find Iy

b  Hence find _[ 2xlog, (x)dx.

1+ 2 =3 marks
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Question 5

Two chocolate companies make 750 gram blocks of milk chocolate. Company X'’s blocks have a
mean of 760 and a standard deviation of 7, while Company Y’s blocks have a mean of 768 and a
standard deviation of 14.

Determine which company has the higher probability of producing a block that weighs at least
750 grams?

3 marks
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