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Question1 D

Amplitude of 4cos(3x — %) is4

This graph has a maximum of 4 and a
minimum of - 4.

Wheny = 4cos(3x — %) —1thegraph hasa

maximum of 4 -1= 3 and a minimum of
-4-1=-5

~. Rangeis[-5,3]

Question2 C

Whent=2, y=2whichistruefor A,Cand E
Looking only at A,C and E,
Whent=6, y=15whichisnot truefor A or E

Question 3 E
V200 x +cosx—+/2=0

(v2cosx—1)(cosx ++/2) =0

= «Ecosx:l or cosx=—«@
-1<cosx<1

.. COSX # —\/E

0<x<2r

.~ COSX = 0<x<2n

\l
ol

T
SX==,
4 4

Sum of solutions = £+E=27r
4 4

Question4 A

Thisisasin or cos graph.

Maximum = 4

Minimum = -2

. Amplitude = 3 (midway between -2 and 4)
Graph has been trandated up 1 so +1 on end.
Period =1 = %

s.n=2
Phase shift is % totheright, - (X — %)

The graph without the phase shift would have
had a maximum when x =0, .. cos graph.

Question5 E
(2x-3)"= (20"~ U](zx)ﬁ(s)l + @(2@%3)2
! 2x)*(3)° ! 2x)%(3)*
-(SJ( x)"(3) +(4j( X)*(3)
7 2 5
—(SJ(ZX) 3 +.....

7
Coefficient of x*is — (5)(2)2(3)5 =-20412

Question6 B
|Oge(X2) - loge(zx) =q

2

|O X__
gezx_q

|O 5_
gez_q
e“:5
2

X = 2e9
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Question 7 E

o o h(x)
—4 4

If g(X) is[—4,0) then f(x) is[-4,0)
If g(X) is[—4,4] then f(X) is[-4,4]
If g(x) is (0,4) then f(x) is (0,4)
If g(X) is (—4,0] then f(x) is (—4,0]
If g(x) is(0,6] then f(x) is (0,4]

Question8 C
The graph ofyzi isreflected in the x axisto

givey= —%. It istrandlated 2 units to theright tg
givey = —ﬁ. Itisdilated by afactor k to

ive ——L
givey= X_2
Whenx=0,y=1

k

y= _é which means the original graph has

been reflected in the x axis, trandated 2 units
to theright parallel to the x axis and dilated by
afactor of 2

Question9 C

For this many-one function to have an inverse
that isalso afunction, it must have its domain
restricted so that it is a one-one function. This
can be done by restricting the domain from the
axis of symmetry, whichin thiscaseis

x=0.

~.[0,3] whichmeansa=0

Question 10 C

Asymptotefory= be* isy=0

. asymptotefory = be*+a isy=a
Asymptote on the given graphisy = -6
s.a=-6
Whenx=0,y=a+b=1fromgraph
~b=7
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Question11 C
Lety=¢"

4
y=1+—
y

y’=y+4
y'-y-4=0
1+41+16
Y=—"""7""

2
117
=73
. 1+417  1-17
e = or

2 2
Bute*>0

.ex_1+«/ﬁ
2

= 2.56155
- X=log, 2.56155 = 0.9406

Question 12 E

Equation of graph is of the form
y=k(x—a)(x-b)(x-¢c)*
Whenx=0, y<O0

.. kisnegative and could be -1
sy =—(X—a)(x—b)(x-c)?

sy =—(X—-b)(x—a)(x - c)?

sy =(b—X)(x— a)(x— c)?

s y=(x—a) (b—x)(x-c)?

Question 13 D
Letu=3x*+5
du
PV
y=log, u
dy 1
du u
dy dy du
dx  du dx

6X

Question 14 B

Gradient of curve at point of tangency = gradient
of tangent line=1

% =1at point of tangency

so2x=1

1
=>y=-6-
y="0%

.. Point of tangency is (%—1—23)

3

On curve when x = E y=
2 2

181

+cC
2 4

26 1 27
=SC=——-"=-—
4 4 4
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Question 15 B

dy 2 d d .
— =X X —C0S2X + COS2X X X
dx dx dx

= x* X (=28iN2X) + COS2xX X 2X
= —2x%SiN2X + 2XC0S2X
Whenx=nxn

dy = —271°SiN21 + 271 CoS2r

Question 16 B

Graph of f(x) has gradient =0 when x =2 and
whenx =4

For 0 < x <4 except whenx =2, y=1(x) isan
increasing graph, hence the gradient, i.e. f'(x)
is greater than O in thisregion.

Question 17 B

The derivative does not exist at X = 2 or at

dx
dy x=-1,orax=4
&:—0+ 2 =2n - domainof f'(x)=R\{-124}
Question 18 B Question 19 C
ﬂ:—3x2+4x+7:0forT.P. = o
dx 2xX+1
(3%x-7)(-x1)=0 1 2dx
24 2x+1

s3X=70rx=-1 .-.x:gorx:—l

. turning points exist at X = gand x=-1

When x < -1 ﬂ<0
dx

When -1 <x<£ Q>O

dx
Whenx>Z ﬂ<0
3 dx

Hence, local minimum when x =-1 and

gradient is positivefor —1 < x<g

y:%Ioge(2x+1)+c

Question 20 D

F(x) = J(Be”sin%)dx

f(x)= 3e”_[(sin%x)dx
PR,

f(x)=3e (—cos4) : 4+c

f(x)=-12¢" cos% +C

Question21 D
Area of trapezium = %(a+ b)h

. Areaunder graph = %(f(l)+ f(1.5)0.5+

%( f(L.5) + f(2))0.5

f()=1+3=4
f(1.5)=2.25+3=5.25
f(Q=4+3=7

. Areaunder graph = %(f(l) +2f(1.5)+ f(2))

~. Areaunder graph = %(4 +10.5+7)=5.375
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Question 22 B
j e>dx = 21623.037
3

%e“]’;‘ = 21623.037

%[eZa — %] = 21623.037

e®® — e°] = 43246.074
e?® = 43246.074 + €°

Question 23 D

Y pPr=1

~b=1-(02+0.3+0.0)
~.b=1-06

~.b=04

p=Y xPr(X=x)=1.2
~.~04-03+04a+0.1a+04=1.2
~.05a=15

) sa=3
e”® = 43649.50279
2a=log, 43649.50279
2a=10.684
a=53
Question24 C Question 25 C
7= X—U Without replacement, hypergeometric
0 Pr at least onegreen = Pr 1isgreen
15— a-10 or Pr 2 are green
4
Pr(x=1)+Pr(x=2
6= a_10 (x=1)+Pr(x=2)
2\(4 2\(4
a=16
_\L)\L N 2)\0
- (6 6
2 2
=0.6
Question 26 A Question 27 D
1 Binomial
_/ =3 p=04
q=0.6
3 4 n=3
x=1
— — 3 1 2
Pr(X=1)= L (0.4)°(0.6)
_ _X—H
Pr(X>4)=Pr(Z>2) Z= > Pr(X =1) = 0.43
Pr(X>4)=1-Pr(Z<2) z:%?’zz
2

Pr(X > 4)=1-0.9772
Pr(X > 4) = 0.0228
Pr(X > 4) = 2.28%
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Question 1 Question 2
2x-320 o 16
2x2>3 % 2 _ log, 8 (1 mark)
3 log,2 log,2
.'.XZE _loga23
~ log, 2
- Domain [> ) (1 mark) %
2 3log,2
Whenx =2 f(x)=—1><0+4:4 log, 2
2 2 =3 (1 mark)
When x — « f(X) - 4— avery large number
s (X)) > —eo
Range(-e,4] (1 mark)
Question 3 Question 4
a.
f(x)=3sin 1
X 5 (x)=3s (3x)
1 1
7 f1(x) = 3x = cos(= X
(¥) = 3x Scos(2 %)
X
= cos() (1 mark)
Using Pythagorean triad 7:24:25 3
X=24 b
0 isin the 4" quadrant ' .
-, tan 0 is negative (1 mark) | Minimum value of 3si n(g), from the amplitude
S tane=— 2_74 (1 mark) | Would be -3 (1 mark)
Question 4 Question 5
b.(continued) a.
X dy
3sin(—)=-3 —=-8(3-2x) x (-2
sin() & = 8(3-29x(-2)
. X dy . .
s n(§) =-1 0<x<8r o 16(3—2x) = 0 for turning point
Os§s8—ﬂ =(3-2x)=0
3 3 3
= X=_=
2
L 3 When x = 3
3 2 2
_E_ Y
x=" (Lmark) | Y=5-4(3-3
2 =y=5-0=5
Mini is —3wh 9 3
INIMUM 1S =S w enx—7 Turning pointis(E,S) (1 mark)
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Question 5 Question 6
b. a.
E(x)= Y, xPr(X=Xx)
y=-4(3-2%)°+5 1 2 3 4 5 6
3 =—+—+—+—+—-+—
Graph of y = x? istrand ated > unitsto the 6 6 6 6 6 6
21
right parallel to the x axis. (2 mark) " 6
Itistrandated 5 units up parallel to they axis =35 (1 mark)
(2 mark)
It isreflected in they axis because of the
minus sign in front of the equation (1 mark)
It isdilated by afactor of 16 inthey
direction(because of the - 4 x (-2)> which
is the coefficient of x? in the expansion
(2 mark)
Question 6 Question 7
b.
' o Sampling without replacement is hypergeometric
95% confidence limits. u+2c Pr(X<2)=Pr(x=0)+Pr(X=1) (1 mark)
=+ sz(X) —u’ (6](24] (6}(24]
4 9 16 25 36 0){10 1)\9
X“p(X) = + — =t =+ —+— =
P=5*5t6t 6 6 6 Pr(X<2) (30} * [30J (1 mark)
x?p(x) = El =15.1667 10 10
Pr(X <2)=0.3264 to four decimal places
0 =+/15.1667—-12.25 =1.708 (1 mark) (1 mark)
20 =342
uxr20=35+342
0.08<1u<6.92
01<u<70 (1 mark)
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Question 8 Question 8
a b.
y=e* J— sinxe“dx = e** + ¢ where c is a constant
L = .

e u= cosx jsn xe“dx = —e* —¢ (1 mark)
% =-9nx
dx 2 z
y=¢" Jsi nxe®dx = —e™]2

0
dy x
— = z
dU p H COSX °°S£ cosO
dy dy du o [sinxe™ix = (—e"2) - (™)
dx du dx :
dy o, . 2
w_C (=sinx) .°.J.sinxe°°sxdx:—e°+e1:e—l (1 mark)
dy : °
— = —sinxe™ 1 mark
> ( )
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