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Question 1

The dosage, D(t) mg, of a particular type of medicine for children aged 1 to 14 years, where
t years is the child’s age, has been modelled by the equation

D(t) = 
  

at
t

t
+

≤ ≤
14,

, 1 14,

where a mg is the adult dosage.

a. i. The dosage for an adult for this drug has been set at 600 mg. How
much should a child who is exactly 4 years old be given? [1 mark]

ii. Based on this model, does a child become an ‘adult’ straight after
its 14th birthday? [2 marks]

b. What is the average rate of change of the dosage of this drug given to a
child  from when the child is one to when the child is 14 years old? [2 marks]

c. What is the rate of change of the dosage of this drug at the time when
the child turns 10 years old. [2 marks]

d. Show that D(t) can be expressed in the form a + 
  

k
t + 14

 and hence show

that the value of k is –8400 for this drug. [2 marks]

e. i. Sketch the graph of D(t) = 
  

at
t

t
+

≤ ≤
14

1 14,  for this particular drug [3 marks]

ii. Clearly state the range of D(t),   1 14≤ ≤t . [2 marks]

f. Based on a dosage d mg, the age of a child, T(d) years, can also be
determined. Find an expression for the child’s age, T(d), for a dosage
d mg of this drug. [3 marks]

g. Using part e., sketch the graph of T(d), stating both range and domain. [3 marks]
Total 20 marks
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Question 2

The concentration C(t) of a drug, in milligrams per litre, in the bloodstream of a patient t
hours after the drug has been administered as tablets, is given by the formula

C(t) = 
  
1
58

0
2 5 1e tt t( ) ,− + − ≥

a. Find the concentration of the drug in the patient’s bloodstream one hour
after the tablets have been administered (answer in milligrams per litre
correct to 2 decimal places). [2 marks]

b. Find a formula for the rate at which the concentration of the drug is
changing with time. State the units of all the main elements of your formula. [3 marks]

c. Find the rate at which the concentration of the drug is changing 3 hours after
the tablets have been administered (to 2 decimal places). Explain the
 significance of your answer to this ‘real’ situation. [2 marks]

d. Find the time(s) at which the concentration of the drug in the patient’s
bloodstream is at a maximum and find the maximum concentration
correct to 2 decimal places. [6 marks]

[Total 13 marks]

Question 3

The resistances of heating elements produced by an electrical firm are normally
distributed with mean 50 ohms and standard deviation 4 ohms.

a. Find the probability that a randomly selected element has a resistance less
than 40 ohms. [3 marks]

b. If the specifications require that acceptable elements shall have a resistance
between 45 and 55 ohms, find the probability that a randomly selected
element has these specifications. [3 marks]

c. The profit on an acceptable element, that is, one whose resistance is within
the specified limits, is $2.00, while unacceptable elements result in a loss of
$0.50. If P dollars is the profit on a randomly selected element produced by
the firm, find the mean and variance of P. [4 marks]

[Total 10 marks]
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Question 4

a. i. Find the derivative  (with respect toθ ) of y = a(1 – tanθ) [1 mark]

ii. Find the derivative of 
  
y b=

cosθ
[2 marks]

iii. Hence, show that 
  

d
d

a b a b
θ

θ
θ

θ θ θ1 2 2−( ) +



 = − +tan

cos
sec sec sin [2 marks]

b. i. Show that if   – sec sec sina b2 2 0θ θ θ+ =  then a = b sinθ. [2 marks]

ii. Hence, show that the function T(θ) = a(1 – tanθ) + 
  

b
cosθ

 will have

a stationary point when sinθ = 
  
a
b

. [2 marks]

Simi the athelete is training for the Olympics. Part of her
training program is to run “Square laps”. On a particularly
wet afternoon she decides to “cheat”. Rather than running
the last 400m along the perimeter of the track from A to B to
C, she decides to run from the vertex A onto the muddy
field and cut across to a point P somewhere on the last 200m
stretch.

Simi can run through the muddy field at a constant speed of
5 m/s and on the track at a constant speed of 8 m/s.

c. Given that  ∠ =PAB θ  where 
 
0

4
≤ ≤θ π  and that PB = x,

i. Show that x = 200 tanθ. [1 mark]

ii. Find an expression in terms of θ for the time it takes Simi to run in a
straight line from A to P. [1 mark]

iii. Find an expression in terms of θ for the time it takes Simi to run in a
straight line from P to C. [1 mark]

iv. Hence show that the total time taken for Simi to run from A to C via

P can be expressed in the form 
  
T a b( ) – tan

cos
θ θ

θ
= ( ) +





200 1 [2 marks]

v. Write down the values of a and b. [1 mark]

vi. Hence, using part b, find the angle, θ, for which Simi’s running time
will be a minimum. [You do not need to justify that the stationary
value is a minimum.] [2 marks]

[Total 17 marks]
Examination 2 Total: 60 marks
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Solutions

Question 1

a. i. a = 600 
  
∴ = ×

+
D( )4 600 4

4 14

  = 133
 
1
3

[A]

ii. D(14) = 300  ( )≠ 600 [M]

∴ Child does not become an adult. [A]

b.
  

D D( ) – ( )
–

–14 1
14 1

300 40
13

= [M]

                       = 20 [A]

i.e., 20 mg/year

c. D′ (t) = 
  

600 14 600

14 2

( ) –

( )

t t

t

+
+

          = 
  

8400
14 2( )t +

[A]

  ∴ ′ =D ( ) .10 14 58 [A]

d.
  
D t

t
t

( ) ( ) –
( )

= +
+

600 14 8400
14

[M]

        
  
= +

+
600 8400

14
–
( )t

  ∴ =k – 8400 [A]
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e. i.

shape   [A]
endpoints  [A][A]

ii. Use of graph [M]

[40, 300] [A]

f.
  
d at

t
dt d at=

+
⇔ + =

14
14 [M]

  
∴ =t d

a d
14

–
[A]

with a = 600,

  
T d d

d
d( )

–
,= ≤ ≤14

600
40 300 [A]

g. Domain = [40, 300] [A]

Range = [1, 14] [A]

shape [M]
1

0 40
d

T

300

(300, 14)

(40, 1)

40

0 1
t

D

14

(14, 300)

(1, 40)
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Question 2

a. C(1) =  
  
1

58
0 3512 5 1e( – ) .− + ≈  milligram per litre [M][A]

b. Rate of change = C’(t) = 
  
– (– – )2 5

58
2 5 1t e t t+ +  [chain rule] [M][A]

Units: t is in hours and C′(t) is in milligrams per litre per hour. [A]

c. C′(3) = –2.56 (mg per litre per hour). [A]

The negative answer means that the drug is being eliminated
from the bloodstream of the patient. [A]

d. C′(t) = 0 when,  0 = 
  
– (– – )2 5

58
2 5 1t e t t+ + [M]

Therfore, either 
  
− + = ⇔ =2 5

58
0 2 5t t . [M][A]

or    e
t t( – ) ,− + =
2 5 1 0  for which there are no real solutions. [M]

That is, there is only one value of t that gives a stationary point.
Using the sign of the first derivative, we find that this is in fact a
local maximum. [M]

Therefore, maximum concentration = C(2.5) ≈3.29 milligrams per litre. [A]

Question 3

a.
  
X N Z

X
~ ( , )

–
,µ σ µ

σ
= = =50 162 and [M]

where X ohms = the resistance of the element.

Pr(X < 40) = Pr(Z < –2.5) = 0.0062 [M][A]

b. Pr(45 < X < 55) = Pr(–1.25 < Z < 1.25) [M][A]

= 0.7887 [A]

c.

  

p

P p

2 00 0 50
0 7887 0 2113

. – .
Pr( ) . .=

[A]

E(P) = 1.472 and E(P2) = 3.208. [M][A]

Therefore, Var(P) = E(P2) – [E(P)]2 = 3.208 – [1.472]2 = 1.041 [A]
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Question 4

a. i.
  
d
d

a a a
θ

θ θ– tan – sec( ) = 2 [A]

ii.
  
y b

dy
d

b= ∴ =(cos ) – (– sin )(cos )– –θ
θ

θ θ1 2 [M]

   
  
= bsin

cos
θ
θ2 [A]

iii.
  

d
d

a a b
θ

θ
θ

– tan
cos

+





  
= +– sec sin

cos
a b2

2θ θ
θ

[M]

  
= +– sec

cos
.sina b2

2
1θ
θ

θ

  = +– sec sec .sina b2 2θ θ θ [A]

b. i.   sec (– sin )2 0θ θa b+ =

  As sec , – sinθ θ≠ + =0 0a b [M]

  ∴ =a bsinθ [A]
ii.   ′ = ⇒ =T b a( ) sinθ θ0 [M]

  
∴ =sinθ a

b
[A]

c. i.
  
tanθ = =PB x

200 200
[M]

  ∴ =x 200tanθ

ii.
  
t AP

AP = =
5

200
5cosθ

[M]

iii.
  
t x

PC = =200
8

200 1
8

– ( – tan )θ
[M]

iv.
  
T( )

cos
( – tan )θ

θ
θ= +200

5
200 1

8
[M]

        
 
= +





200 1
5

1 1
8

1.
cos

( – tan )
θ

θ [A]

v.
  
a b= =1

8
1
5

, [A]

vi.

 

sinθ = =
1

8
1

5

5
8

[M]

angle = 0.6751 radians = 38°41′ [A]


